Tính : A= 1.2+3.4+5.6+...+99.100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(2-1\right).2+\left(4-1\right).4+\left(6-1\right).6+...+\left(100-1\right).100\\ A=2^2-2+4^2-4+6^2-6+...+100^2-100\\ A=\left(2^2+4^2+...+100^2\right)-\left(2+4+...+100\right)\\ A=2^2\left(1+2^2+3^2+...+50^2\right)-\dfrac{\left(100+2\right).50}{2}\\ A=\dfrac{4.50.51.52}{6}-\dfrac{102.50}{2}=85850\)
Mình làm mẫu 1 bài nha !
Có : 12A = 1.5.12+5.9.12+....+101.105.12
= 1.5.12+5.9.(13-1)+.....+101.105.(109-97)
= 1.5.12+5.9.13-1.5.9+.....+101.105.109-97.101.105
= 1.5.12-1.5.9+101.105.109
= 1155960
=> A = 1155960 : 12 = 96330
Tk mk nha
Có : 4D = 1.2.3.4+2.3.4.4+....+98.99.100.4
= 1.2.3.4+2.3.4.(5-1)+.....+98.99.100.(101-97)
= 1.2.3.4+2.3.4.5-1.2.3.4+......+98.99.100.101-97.98.99.100
= 98.99.100.101
=> D = 98.99.100.101/4 = 24497550
A = 1.2 + 2.3 + 3.4 + ....... + 99.100
3A = 1.2.3 + 2.3.3 + 3.4.3 + ....... + 99 . 100 . 3
3A = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) +.... + 99.100.(101-98)
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ..... + 99 . 100 . 101 - 98 . 99 . 100
3A = (1.2.3 - 1.2.3) + (2.3.4-2.3.4) + ... + (98.99.100 - 98.99.100) + 99 . 100 . 101
3A = 99 . 100 . 101 = 999900
A = 999900 : 3 = 333300
A=1*2+2*3+3*4+...+99*100
A=100*101*102:3
A=343400(công thức)
gọi tổng là S ta có
3S=1.2.3-0.1.2+2.3.4-1.2.3+......+99.100.101-98.99.100
=>3S=98.99.100
=>S=\(\frac{98.99.100}{3}=323400\)
A = 1.2+2.3+3.4+......+99.100
Gấp A lên 3 lần ta có:
A . 3 = 1.2.3 + 2.3.3 + 3.4.3 + … + 99.100.3
A . 3 = 1.2.3 + 2.3.(4 - 1) + 3.4.( 5 - 2) + … + 99.100. (101 - 98)
A . 3 = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + … + 99.100.101 - 98.99.100
A . 3 = 99.100.101
A = 99.100.101 : 3
A = 33.100.101
A = 333 300
A=1.2+2.3+3.4+...+99.100
3A=1.2.3+2.3.3+3.4.3+...+99.100.3
3A=1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
3A=(1.2.3-1.2.3)+(3.4.5-3.4.5)+...+(98.99.100)+99.100.101
3A=99.100.101
A=99:3.100.101
A=33.100.101
A=333300
Nhưng nè hình như bài của bn Quỳnh Giang Bùi mik thấy sai sao đấy nhỉ?
Đặt
S= 1.2 + 2.3 + 3.4 + ...+ 99.100
3S = 1.2.3+2.3.3+3.4.3+...+98.99.3+99.100.3
3S= 1.2.3+2.3(4-1)+3.4(5-2)+...+98.99(100-97)+99.100(101-98)
3S= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...-97.98.99+99.100.101-98.99.100
3S = 99.100.101 3S = 3.33.100.101
S=33.100.101= 333300
Theo công thức ta có :
1.2+3.4+5.6+.....+99.100 = \(\frac{99.100.101}{3}=333300\)
Giải
A = 2 + ( 2+ 1).4 + ( 4 + 1)6 + … + (98 + 1).100
= 2 + 2.4 + 4 + 4.6 + 6 + … + 98.100 + 100
= (2.4 + 4.6 + … + 98.100 ) + (2 + 4 + 6 + 8 + … + 100)
= 98.100.102 : 6 + 102.50:2
= 166600 + 2550
= 169150
Cách Khác
A = 1.(3 - 1) + 3(5 - 1) + 5(7 - 1) + … + 99(101 - 1)
= 1.3 - 1 + 3.5 - 3 + 5.7 - 5 + … + 99.101 - 99
= (1.3 + 3.5 + 5.7 + … + 99.101) - (1 + 3 + 5 + 7 + … + 99)
= 171650 – 2500
= 169150
Ta có: A = (2 – 1).2 + (4 – 1).4 + (6 – 1).6 + … + (100 – 1).100
A = 22 – 2 + 42 – 4 + 62 – 6 + … + 1002 – 100
A = (22 + 42 + 62 + … + 1002) – (2 + 4 + 6 + … + 100)
A = 22.(12 + 22 + 32 + … + 502) – (100 + 2).50 : 2
A = 22.50.51.52 : 6 – 51.50 = 88400 – 2550 = 85850.