Cho tam giác ABC vuông tại A.Kẻ AH vuông góc BC tại H.Kẻ AD là phân giác của HAC.
a)Tìm các cặp góc có tổng số đo bằng 90 độ
b)Cho b=50độ, tính số đo C,BAH,HAD,ADC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình e tự vẽ nhé
a) Xét tam giác BHA vuông tại H có
góc B + góc HAB = 90 độ ( hai góc phụ nhau)
40 độ + góc HAB = 90 độ
=> góc HAB = 50 độ
mà góc HAB + góc HAC = 90 độ ( tam giác ABC có góc A = 90 độ)
Ta lại có góc HAC + Góc C = 90 độ ( hai góc phụ nhau )
=> góc HAB = góc C = 50 độ
a: Ta có: ΔABC vuông tại A
nên \(\widehat{B}+\widehat{C}=90^0\)
\(\Leftrightarrow\widehat{C}=90^0-40^0=50^0\)
a, chứng minh tứ giác ADHB nội tiếp, xác định tâm O đường tròn ngoại tiếp tứ giác.
Ta có:
ADB^ = 1v (gt)
AHB^ = 1v (gt)
=> ABHD nội tiếp đường tròn đường kính AB.
Tâm O là trung điểm AB.
b, chứng minh góc EAD bằng HBD và OD song song HB:
Ta có:
EAD^ = ABD^ (1) ( có cạnh L)
BD là phân giác nên:
ABD^ = HBD^ (2)
(1) và (2) => EAD^ = HBD^.
*cm OD song song HB:
tam giác BOD cân và có góc AOD là góc ngoài của tam giác BOD => AOD^ = 2.ABD^ = ABC^
=> OD //Bc vì có 2 góc ở vị trí đồng vị = nhau.
c, chứng minh tứ giác HCED nội tiếp:
Ta có:
CHD^ = 90*- AHD^
mà AHD^ = ABE^ ( cùng chắn cung AD)
=> CHD^ = 90* - ABE^ (1)
mặt khác:
BEC^ = 180* - AEB^
mà AEB^ = 90 - ABE^
=> BEC^ =180* - 90* + ABE^ = 90* + ABE^ (2)
(1) + (2):
CHD^ + BEC^ = 90* - ABE^ + 90* + ABE^ = 180*
vậy tứ giác HCED nội tiếp đường tròn.
d, cho biết góc ABC bằng 60 độ và AB = a (a> 0 cho trước). Tính theo a diện tích tam giác ABC phần nằm ngoài đường tròn O:
Diện tích tam giác ABC phần nằm ngoài đường tròn (gọi là S) là phần diện tích giới hạn bỡi AC, AH và cung (ADH). và S = diện tích tam giác ABC - diện tích giới hạn bỡi AB, BH và cung (ADH) (gọi là S1)
* tính S(ABC):
tam giác L ABH có:
AH = a.sin 60* = a.√3/2
BH = a/2 ( đối diện góc 30* = 1/2 cạnh huyền)
tam giác L ABC có:
BC = a/cos 60* = 2a.
=> S(ABC) = AH.BC/2 = (a.√3/2).(2a)/2 = a^2√3/2
* tính S1:
dễ thấy:S(BOH) = S(ABH)/2 = AH.BH/4 = (a.√3/2).(a/2)/4 = a^2√3/16
tam giác cân OBH có OBH^ = 60* => BOH^ = 60*
S3 = diện tích hình quạt OBH = (60*/360*).OB^2.TT = 1/6.a^2/4.TT = a^2.TT/24
S4 =diện tích giới hạn bỡi BH và cung (BH) = S3 - S(BOH)
= a^2.TT/24 - a^2√3/16 = a^2(TT/3 -√3/2)/8
S1 = diện tích 1/2 đường tròn - S4
= a^2.TT/8 - a^2(TT/3 -√3/2)/8
= a^2(TT - TT/3 + √3/2)/8
= a^2(2TT/3 + √3/2)/8
vậy:
S = S(ABC) - S1 = a^2√3/2 - a^2(2TT/3 + √3/2)/8
=(a^2/2).[(√3 - (2TT/3 + √3/2)/4]
= a^2(45√3 -4TT)/96
-----bạn kiểm tra lại số liệu tính toán.
Bài 2:
a, Chứng minh AM. AE = AC^2:
(AB) là kí hiệu cung AB
Ta có:
sđ ACM^ = sđ (AM)/2 = sđ(AC -CM)/2 = sđ AEB^
=> tam giác ACM đồng dạng với ACE. (g.g.g) cho ta:
AC/AE =AM/AC =>AM. AE = AC^2
b, DM cắt BC tại I, AI cắt đường tròn O tại N. Chứng minh D, N, E thẳng hàng.
tam giác ADE có
DM L AE ( AMD^ = 1v góc nội tiếp chăn1/2 đường tròn)
EH L AD ( H là giao của AD và BE)
vậy EH và DM là 2 đường cao
=> AI L DE
mặt khác
DN L AI ( góc AND^ nội tiếp chắn 1/2 đường tròn)
=> DN // DE và có D chung => D, N, E thẳng hàng.
c, Cho BAC = 45độ. Tính theo R chu vi hình phẳng giới hạn bởi AB, AC và cung BDC:
Ta có:
BOC^ = 2.BAC^ = 90*
( góc ở tâm = 2 lần góc nội tiếp cùng chắn cung BC.
=> cung (BDC) = 2.TT.R/4 = TT.R/2
tam giác BOC là tam giác L cân tại O nên:
BC = R.√2 => BH = BC/2=R.√2/2
tam giác BHO là tam giác L cân, cho ta:
BH = OH = R.√2/2.
=> AH = OH + OA = R.√2/2 +R = R(1+√2/2)
tam giác L AHB có:
AB^2 = AH^2 + BH^2
= R^2.(1+√2/2)^2 + R^2/2
= R^2(1 + √2 + 1/2 + 1/2)
= R^2.(2+√2)
=> AB = R√(2 +√2 )
mà AB = AC => AB = AC= R√(2 +√2 )
chu vi hình phẳng:
CV=cung (BDC) + AB +AC = TT.R/2 + 2.R√(2 +√2 )
~~~~~~~~~~ai đi qua nhớ để lại ~~~~~~~~~~~~
Xét tam giác ABC có:
^A+^B+^C=180°(đl tổng ba góc tam giác)
=>^B+^C=180°-a
Vì BI là pg ^B
=>^ABI=^IBC=1/2^B
Vì CI là pg ^C
=>^BCI=^ICA=1/2^C
Ta có:^B+^C=180°-a
=>(^B+^C)/2=(180°-a)/2
=>^IBC+^BCI=90°-a/2
Xét tam giác BIC có:
^IBC+^BCI+^BIC=180°(đl tổng ba góc tam giác)
=>^BIC=180°-90°-a/2
=>^BIC=90°+a/2
Bạn vẽ hình giúp mình nhé. Mình chỉ giải thôi nha!
1.Vì AH vuông góc với BC
=>^AHC=90°
Xét tam giác HAC vuông tại H
=>^HAC+^C=90°
=>^HAC=90° -^C (1)
Xét tam giác ABC vuông tại A
=>^B+^C=90°
=>^B=90° - ^C (2)
Từ (1) và (2)=>đpcm
-----------------------------------------------------------------
Câu này cm tương tự
a) \(\widehat{BAC}=180^o-\widehat{B}-\widehat{C}=180^o-60^o-30^o=90^o\)
\(\widehat{ADH}=90^o-\widehat{DAH}=90^o-\left(\widehat{DAB}-\widehat{HAB}\right)=90^o-\left(45^o-30^o\right)=75^o\)
\(\widehat{HAD}=\widehat{DAB}-\widehat{HAB}=45^o-30^o=15^o\)
b) Xét tam giác \(EAD\)vuông tại \(E\)có \(\widehat{EAD}=\frac{1}{2}\widehat{BAC}=45^o\)nên tam giác \(EAD\)vuông cân tại \(E\).
Do đó phân giác \(EK\)của tam giác \(EAD\)cũng đồng thời là đường cao
suy ra \(EK\)vuông góc với \(AD\).
bạn ơi thế \(\widehat{HAB}\) tìm kiểu gì ạ vì góc đó chưa có số đo ạ :|
a: góc B+góc C=90 độ
góc HAC+góc C=90 độ
=>góc B=góc HAC
=>góc C=góc BAH
b: góc CAD+góc BAD=90 độ
góc CDA+góc HAD=90 độ
mà góc BAD=góc HAD
nên góc CAD=góc CDA
c: ΔCAD cân tại C có CK là phân giác
nên CK vuông góc AD
a: góc CAD và góc BAD
góc BAH và góc CAH
góc BAH và góc C
góc CAH và góc B
b: góc C=90-50=40 độ
góc BAH=90-50=40 độ
góc HAD=góc CAD=50/2=25 độ
góc ADC=180-25-40=180-65=115 độ