tổng bình phương các nghiệm của pt : xcan (3-2x)=3x^2-6x+4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
pt<=> \(2x\sqrt{3-2x}=6x^2-12x+8\)
<=>\(6x^2-12x+8-2x\sqrt{3-2x}=0\)
<=> \(x^2-2x\sqrt{3-2x}+3-2x+5x^2-10x+5=0\)
<=> \(\left(x-\sqrt{3-2x}\right)^2+5\left(x-1\right)^2=0\)
đến đây cậu tự giải nha
\(x\sqrt{3-2x}=3x^2-6x+4\left(ĐK:x\le\frac{3}{2}\right)\)
\(\Leftrightarrow2x\sqrt{3-2x}=6x^2-12x+8\)
\(\Leftrightarrow\left(x^2-2x\sqrt{3-2x}+3-2x\right)+\left(5x^2-10x+5\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{3-2x}\right)^2+5\left(x-1\right)^2=0\)
\(\Leftrightarrow\left\{\begin{matrix}x-\sqrt{3-2x}=0\\x-1=0\end{matrix}\right.\Rightarrow x=1\left(tm\right)\)
\(\left(2x-3\right)\left(3x+2\right)=6x\left(x-50\right)+44\\ \Leftrightarrow6x^2+4x-9x-6=6x^2-300x+44\\\Leftrightarrow 6x^2-6x^2+4x-9x+300x=6+44\\\Leftrightarrow 295x=50\\\Leftrightarrow x=\frac{10}{59}\)
Vậy phương trình trên có nghiệm là \(\frac{10}{59}\)