K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 12 2022

Lời giải:
$EF=\sqrt{ED^2+DF^2}=\sqrt{5^2+12^2}=13$ (cm) theo định lý Pitago

$\sin E=\frac{DF}{EF}=\frac{12}{13}$

$\cos E=\frac{ED}{EF}=\frac{5}{13}$

$\tan E=\frac{DF}{ED}=\frac{12}{5}$

$\cot E=\frac{1}{\tan E}=\frac{5}{12}$

Vì $\widehat{E}, \widehat{F}$ là 2 góc phụ nhau nên:
$\sin F=\cos E=\frac{5}{13}$

$\cos F=\sin E=\frac{12}{13}$

$\tan F=\cot E=\frac{5}{12}$

$\cot F=\tan E=\frac{12}{5}$

10 tháng 11 2023

a: ΔDEF vuông tại D

=>\(DE^2+DF^2=EF^2\)

=>\(EF^2=0,9^2+12^2=144,81\)

=>\(EF=\sqrt{144,81}\)(cm)

Xét ΔDEF vuông tại D có \(tanE=\dfrac{DF}{DE}\)

=>\(tanE=\dfrac{12}{0,9}=\dfrac{120}{9}=\dfrac{40}{3}\)

b: Xét ΔDEF vuông tại D có

\(sinF=\dfrac{DE}{EF}=\dfrac{0.9}{\sqrt{144,81}}\)

\(cosF=\dfrac{DF}{EF}=\dfrac{12}{\sqrt{144,81}}\)

\(tanF=\dfrac{0.9}{12}=\dfrac{9}{120}=\dfrac{3}{40}\)

\(cotF=\dfrac{12}{0.9}=\dfrac{40}{3}\)

4 tháng 10 2021

△DEF vuông tại D có \(\left\{{}\begin{matrix}sinE=\dfrac{DF}{EF}\\cosE=\dfrac{DE}{EF}\\tanE=\dfrac{DF}{DE}\\cotE=\dfrac{DE}{DF}\end{matrix}\right.\)

\(DE=EF.cosE=DF.cotE\\ DF=EF.sinE=DE.tanE\\ EF=\dfrac{DF}{sinE}=\dfrac{DE}{cosE}\)

a: ΔFME vuông tại M

=>MF^2+ME^2=EF^2

=>\(EF=\sqrt{9^2+6^2}=3\sqrt{13}\left(cm\right)\)

Xét ΔFME vuông tại M có 

\(sinE=\dfrac{MF}{EF}=\dfrac{6}{3\sqrt{13}}=\dfrac{2}{\sqrt{13}}\)

\(cosE=\dfrac{ME}{EF}=\dfrac{3}{\sqrt{13}}\)

tan E=2/căn 13:3/căn 13=2/3

cot E=1:2/3=3/2

b: ΔDEF vuông tại F có FM là đường cao

nên FM^2=DM*ME

=>DM=6^2/9=4cm

DE=9+4=13cm

ΔDEF vuông tại F

=>FD^2+FE^2=ED^2

=>FD^2=13^2-(3căn 13)^2=169-117=52

=>FD=2căn 13(cm)

c: Xét ΔDMF vuông tại M có

sin D=FM/FD=6/2căn 13=3/căn 13

cos D=MD/DF=2/căn 13

tan D=3/căn 13:2/căn 13=3/2

cot D=1:3/2=2/3

a: \(\sin\widehat{E}=\dfrac{4}{5}\)

\(\cos\widehat{E}=\dfrac{3}{5}\)

\(\tan\widehat{E}=\dfrac{4}{3}\)

\(\cot\widehat{E}=\dfrac{3}{4}\)

a: Xét ΔDFE vuông tại D có

\(FE^2=DE^2+DF^2\)

hay FE=7,5(cm)

Xét ΔDEF vuông tại D có 

\(\sin\widehat{E}=\dfrac{DF}{EF}=\dfrac{4}{5}\)

\(\cos\widehat{E}=\dfrac{3}{5}\)

\(\tan\widehat{E}=\dfrac{4}{3}\)

\(\cot\widehat{E}=\dfrac{3}{4}\)

b: \(\cos\widehat{E}=\dfrac{3}{5}\)

nên \(\widehat{E}=53^0\)

a: Xét ΔDFE vuông tại D có

\(FE^2=DE^2+DF^2\)

hay FE=7,5(cm)

Xét ΔDEF vuông tại D có 

\(\sin\widehat{E}=\dfrac{DF}{EF}=\dfrac{4}{5}\)

\(\cos\widehat{E}=\dfrac{3}{5}\)

\(\tan\widehat{E}=\dfrac{4}{3}\)

\(\cot\widehat{E}=\dfrac{3}{4}\)

b: \(\cos\widehat{E}=\dfrac{3}{5}\)

nên \(\widehat{E}=53^0\)

a: EP/FP=DE/DF=3/4

b: Xet ΔFHP vuông tại H và ΔFDE vuông tại D có

góc HFP chung

=>ΔFHP đồng dạng vơi ΔFDE

c: ΔFHP đồng dạng với ΔFDE

=>HP/DE=FP/FE=4/7

=>HP/9=4/7

=>HP=36/7(cm)

27 tháng 3 2023

a: EP/FP=DE/DF=3/4

b: Xet ΔFHP vuông tại H và ΔFDE vuông tại D có

góc HFP chung

=>ΔFHP đồng dạng vơi ΔFDE

c: ΔFHP đồng dạng với ΔFDE

=>HP/DE=FP/FE=4/7

=>HP/9=4/7

=>HP=36/7(cm)

a) Xét ΔDEF có 

EM là đường phân giác ứng với cạnh DF(gt)

nên \(\dfrac{DM}{DE}=\dfrac{MF}{EF}\)(Tính chất đường phân giác của tam giác)

\(\Leftrightarrow\dfrac{DM}{5}=\dfrac{MF}{6}\)

mà DM+MF=DF(M nằm giữa D và F)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{DM}{5}=\dfrac{MF}{6}=\dfrac{DM+MF}{5+6}=\dfrac{DF}{11}=\dfrac{5}{11}\)

Do đó: 

\(\dfrac{DM}{5}=\dfrac{5}{11}\)

hay \(DM=\dfrac{25}{11}cm\)

Vậy: \(DM=\dfrac{25}{11}cm\)