Tìm GTLN
A = -9x - 18x + 24x
B = =2x^2 - 5x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
$A=(9x^2-5x)+(5y^2+3y)$
$=[(3x)^2-2.3x.\frac{5}{6}+(\frac{5}{6})^2]+5(y^2+\frac{3}{5}y+\frac{3^2}{10^2})-\frac{103}{90}$
$=(3x-\frac{5}{6})^2+5(y+\frac{3}{10})^2-\frac{103}{90}$
$\geq \frac{-103}{90}$
Vậy $A_{\min}=\frac{-103}{90}$. Giá trị này đạt tại $3x-\frac{5}{6}=y+\frac{3}{10}=0$
$\Leftrightarrow (x,y)=(\frac{5}{18}, \frac{-3}{10})$
Bài 2:
a.
$-A=4x^2+5y^2-8xy-10y-12$
$=(4x^2-8xy+4y^2)+(y^2-10y+25)-37$
$=(2x-2y)^2+(y-5)^2-37\geq -37$
$\Rightarrow A\leq 37$
Vậy $A_{\max}=37$. Giá trị này đạt tại $2x-2y=y-5=0$
$\Leftrightarrow x=y=5$
b.
$-B=3x^2+16y^2+8xy+5x-2$
$=(x^2+16y^2+8xy)+2(x^2+\frac{5}{2}x+\frac{5^2}{4^2})-\frac{41}{8}$
$=(x+4y)^2+2(x+\frac{5}{4})^2-\frac{41}{8}$
$\geq \frac{-41}{8}$
$\Rightarrow B\leq \frac{41}{8}$
Vậy $B_{\max}=\frac{41}{8}$. Giá trị này đạt tại $x+4y=x+\frac{5}{4}=0$
$\Leftrightarrow x=\frac{-5}{4}; y=\frac{5}{16}$
1: \(\dfrac{2x^3+11x^2+18x-3}{2x+3}\)
\(=\dfrac{2x^3+3x^2+8x^2+12x+6x+9-12}{2x+3}\)
\(=x^2+4x+3-\dfrac{12}{2x+3}\)
a: \(=\dfrac{2x^5-2x^3-3x^3+3x+x^2-1}{x^2-1}\)
\(=2x^3-3x+1\)
\(A=4-6x-x^2=-\left(x^2+6x-4\right)=-\left(x^2+6x+9-13\right)\)
\(=-\left[\left(x+3\right)^2-13\right]=-\left(x+3\right)^2+13\le13\)
Vậy \(A_{max}=13\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
\(B=3x^2-6x+1=\left(\sqrt{3}x\right)^2-2.\sqrt{3}x.\sqrt{3}+3-2\)
\(=\left(\sqrt{3}x-\sqrt{3}\right)^2-2\ge-2\)
Vậy \(B_{min}=-2\Leftrightarrow\sqrt{3}x-\sqrt{3}=0\Leftrightarrow x=1\)
\(C=5x^2-2x-3=\left(\sqrt{5}x\right)^2-2.\sqrt{5}x.\frac{1}{\sqrt{5}}+\frac{1}{5}-\frac{16}{5}\)
\(=\left(\sqrt{5}x-\frac{1}{\sqrt{5}}\right)^2-\frac{16}{5}\ge-\frac{16}{5}\)
Vậy \(C_{min}=-\frac{16}{5}\Leftrightarrow\sqrt{5}x-\frac{1}{\sqrt{5}}=0\Leftrightarrow\sqrt{5}x=\frac{1}{\sqrt{5}}\Leftrightarrow x=\frac{1}{5}\)
x -1 2x -5x +x +3x-1 2 5 3 2 2x 3 2x -2x 5 3 -3x +x +3x-1 3 2 -3x -2 -3x +3x 3 2 -2x +3x-1 2 2 -2x +2 3x -3
a: \(x^3-9x^2+6x+16\)
\(=x^3-8x^2-x^2+8x-2x+16\)
\(=x^2\left(x-8\right)-x\left(x-8\right)-2\left(x-8\right)\)
\(=\left(x-8\right)\left(x^2-x-2\right)\)
\(=\left(x-8\right)\left(x-2\right)\left(x+1\right)\)
b: \(x^3-x^2-x-2\)
\(=x^3-2x^2+x^2-2x+x-2\)
\(=x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)\)
\(=\left(x-2\right)\cdot\left(x^2+x+1\right)\)
c: \(x^3+x^2-x+2\)
\(=x^3+2x^2-x^2-2x+x+2\)
\(=x^2\left(x+2\right)-x\left(x+2\right)+\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-x+1\right)\)
d: \(x^3-6x^2-x+30\)
\(=x^3+2x^2-8x^2-16x+15x+30\)
\(=x^2\left(x+2\right)-8x\left(x+2\right)+15\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-8x+15\right)\)
\(=\left(x+2\right)\left(x-3\right)\left(x-5\right)\)
e: Sửa đề: \(x^3-7x-6\)
\(=x^3-x-6x-6\)
\(=x\left(x^2-1\right)-6\left(x+1\right)\)
\(=x\left(x-1\right)\left(x+1\right)-6\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x-6\right)\)
\(=\left(x+1\right)\left(x-3\right)\left(x+2\right)\)
f: \(27x^3-27x^2+18x-4\)
\(=27x^3-9x^2-18x^2+6x+12x-4\)
\(=9x^2\left(3x-1\right)-6x\left(3x-1\right)+4\left(3x-1\right)\)
\(=\left(3x-1\right)\left(9x^2-6x+4\right)\)
g: \(2x^3-x^2+5x+3\)
\(=2x^3+x^2-2x^2-x+6x+3\)
\(=x^2\left(2x+1\right)-x\left(2x+1\right)+3\left(2x+1\right)\)
\(=\left(2x+1\right)\left(x^2-x+3\right)\)
h: \(\left(x^2-3\right)^2+16\)
\(=x^4-6x^2+9+16\)
\(=x^4-6x^2+25\)
\(=x^4+10x^2+25-16x^2\)
\(=\left(x^2+5\right)^2-\left(4x\right)^2\)
\(=\left(x^2+5+4x\right)\left(x^2+5-4x\right)\)
2) A= -9x2 - 18x + 24
=-9x2-18x-9+33
=-(9x2+2.3.3+9)+33
=-(3x+3)2+33\(\le\)33 ( vì -(3x+3)\(\le\)0 )
dấu = xảy ra khi:
3x+3=0
<=>3x=-3
<=>x=-1
vậy GTLN của A là 33 tại x=-1
B=-2x^2 - 5x
=-2(x2+-5/2x)
=-2(x2+2x.5/4+25/16-25/16)
=-2(x2+2x.5/4+25/16)+25/8
=-2(x+5/4)2+25/8\(\le\)25/8 ( vì -2(x+5/4)2\(\le\)0)
dấu = xảy ra khi:
x+5/4=0
<=>x=-5/4
vậy GTLN của B là 25/8 tại x=-5/4