Cho: a,b,c>0 và a+b+c=4
CMR: \(\sqrt{a+b}\) + \(\sqrt{b+c}\) +\(\sqrt{c+a}\) >0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gõ link này nha: http://olm.vn/hoi-dap/question/1078496.html
Áp dụng BĐT Bunhiacopxki:
\(\sqrt{\left(a+b\right)\left(a+c\right)}\ge\sqrt{ac}+\sqrt{ab}\)
\(\Rightarrow\)\(\frac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}\)\(\le\frac{a}{a+\sqrt{ab}+\sqrt{ac}}\)=\(\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)(1)
Tương tự ta có: \(\frac{b}{b+\sqrt{\left(b+c\right)\left(b+a\right)}}\le\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)(2)
\(\frac{c}{c+\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)(3)
Cộng theo vế của (1);(2)&(3) ta đc:
A\(\le1\)
Dấu''='' xảy ra\(\Leftrightarrow\)a=b=c
Ta có: \(\dfrac{b}{\sqrt{a+b}-\sqrt{a-b}}=\dfrac{b}{\dfrac{\left(a+b\right)-\left(a-b\right)}{\sqrt{a+b}+\sqrt{a-b}}}\)
\(=\dfrac{b}{\dfrac{a+b-a+b}{\sqrt{a+b}+\sqrt{a-b}}}=\dfrac{\sqrt{a+b}+\sqrt{a-b}}{b}\)
Và \(\dfrac{c}{\sqrt{a+c}-\sqrt{a-c}}=\dfrac{c}{\dfrac{\left(a+c\right)-\left(a-c\right)}{\sqrt{a+c}+\sqrt{a-c}}}\)
\(=\dfrac{c}{\dfrac{a+c-a+c}{\sqrt{a+c}+\sqrt{a-c}}}=\dfrac{\sqrt{a+c}+\sqrt{a-c}}{c}\)
Từ \(a>b>c>0\) thì \(\left\{{}\begin{matrix}a+b>a+c\\a-b>a-c\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\sqrt{a+b}>\sqrt{a+c}\\\sqrt{a-b}>\sqrt{a-c}\end{matrix}\right.\)
\(\Rightarrow\sqrt{a+b}+\sqrt{a-b}>\sqrt{a+c}+\sqrt{a-c}\)
\(\Rightarrow\dfrac{\sqrt{a+b}+\sqrt{a-b}}{b}< \dfrac{\sqrt{a+c}+\sqrt{a-c}}{c}\left(b>c>0\right)\)
Hay ta có ĐPCM
\(\dfrac{b}{\sqrt{a+b}-\sqrt{a-b}}=\dfrac{b}{\dfrac{a+b-a-b}{\sqrt{a+b}+\sqrt{a-b}}}=\dfrac{b}{\dfrac{0}{\sqrt{a+b}+\sqrt{a-b}}}\rightarrow\varnothing\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT^2=\left(\sqrt{\left(a+c\right)\left(b+c\right)}+\sqrt{\left(a-c\right)\left(b-c\right)}\right)^2\)
\(\le\left(a+c+a-c\right)\left(b+c+b-c\right)\)
\(=2a\cdot2b=4ab=VP^2\)
\(\Rightarrow VT\le VP\) *ĐPCM*
\(A=\frac{a\sqrt{a}}{\sqrt{a+b+2c}}+\frac{b\sqrt{b}}{\sqrt{b+c+2a}}+\frac{c\sqrt{c}}{\sqrt{c+a+2b}}\)
\(A=\frac{a^2}{\sqrt{a\left(a+b+2c\right)}}+\frac{b^2}{\sqrt{b\left(b+c+2a\right)}}+\frac{c^2}{\sqrt{c\left(c+a+2b\right)}}\)
\(\ge\frac{\left(a+b+c\right)^2}{\sqrt{a\left(a+b+2c\right)}+\sqrt{b\left(b+c+2a\right)}+\sqrt{c\left(c+a+2b\right)}}\)
Xét: \(2\left(\sqrt{a\left(a+b+2c\right)}+\sqrt{b\left(b+c+2a\right)}+\sqrt{c\left(c+a+2b\right)}\right)\)
\(=\sqrt{4a\left(a+b+2c\right)}+\sqrt{4b\left(b+c+2a\right)}+\sqrt{4c\left(c+a+2b\right)}\)
\(\le\frac{4a+a+b+2c+4b+b+c+2a+4c+c+a+2b}{2}=4\left(a+b+c\right)\)
\(\Rightarrow\sqrt{a\left(a+b+2c\right)}+\sqrt{b\left(b+c+2a\right)}+\sqrt{c\left(c+a+2b\right)}\le2\left(a+b+c\right)\)
\(\Rightarrow\frac{\left(a+b+c\right)^2}{\sqrt{a\left(a+b+2c\right)}+\sqrt{b\left(b+c+2a\right)}+\sqrt{c\left(c+a+2b\right)}}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{3}{2}\)
\("="\Leftrightarrow a=b=c=1\)
Xem câu hỏi đây nhé >4>0 :)