K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2017

Anh chị em giúp em vì em phải nộp gấp! Mong AD giúp!

24 tháng 2 2021

Gọi BE cắt đường tròn (O) tại điểm thứ hai là N. Gọi L là hình chiếu của I trên ME.

Dễ thấy ^BNA = 900. Suy ra ΔΔBNA ~ ΔΔBCE (g.g) => BN.BE = BC.BA 

Cũng dễ có ΔΔBMA ~ ΔΔBCK (g.g) => BC.BA = BM.BK. Do đó BN.BE = BM.BK

Suy ra tứ giác KENM nội tiếp. Từ đây ta có biến đổi góc: ^KNA = 3600 - ^ANM - ^KNM

= (1800 - ^ANM) + (1800 - ^KNM) = ^ABM + (1800 - ^AEM) = ^EFM + ^MEF = ^KFA

=> 4 điểm A,K,N,F cùng thuộc một đường tròn. Nói cách khác, đường tròn (I) cắt (O) tại N khác A

=> OI vuông góc AN. Mà AN cũng vuông góc BE nên BE // OI (1)

Mặt khác dễ có E là trung điểm dây KF của (I) => IE vuông góc KF => IE // AB (2)

Từ (1);(2) suy ra BOIE là hình bình hành => IE = OB = const

Ta lại có EM,AB cố định => Góc hợp bởi EM và AB không đổi. Vì IE // AB nên ^IEL không đổi

=> Sin^IEL = const hay ILIE=constILIE=const. Mà IE không đổi (cmt) nên IL cũng không đổi

Vậy I di động trên đường thẳng cố định song song với ME, cách ME một khoảng không đổi (đpcm).

a: Xét ΔADI vuông tại D và ΔAHI vuông tại H có

AI chung

\(\widehat{DAI}=\widehat{HAI}\)

Do đó: ΔADI=ΔAHI

=>AD=AH

mà AD=AB

nên AH=AB

Xét ΔABK vuông tại B và ΔAHK vuông tại H có

AB=AH

AK chung

DO đó: ΔABK=ΔAHK

b: ΔAHK=ΔABK

=>\(\widehat{HAK}=\widehat{BAK}\)

=>AK là phân giác của \(\widehat{BAH}\)

=>\(\widehat{HAK}=\dfrac{1}{2}\cdot\widehat{BAH}\)

\(\widehat{IAK}=\widehat{IAH}+\widehat{HAK}\)

\(=\dfrac{1}{2}\cdot\widehat{DAH}+\dfrac{1}{2}\cdot\widehat{BAH}\)

\(=\dfrac{1}{2}\cdot\left(\widehat{DAH}+\widehat{BAH}\right)=\dfrac{1}{2}\cdot90^0=45^0\)

29 tháng 11 2023

a: \(\widehat{BAM}+\widehat{DAM}=\widehat{BAD}=90^0\)

\(\widehat{DAM}+\widehat{DAN}=\widehat{MAN}=90^0\)

Do đó: \(\widehat{BAM}=\widehat{DAN}\)

Xét ΔABM vuông tại B và ΔADN vuông tại D có

AB=AD

\(\widehat{BAM}=\widehat{DAN}\)

Do đó: ΔABM=ΔADN

=>AM=AN

b: Xét ΔQAB và ΔQKD có

\(\widehat{QAB}=\widehat{QKD}\)

\(\widehat{AQB}=\widehat{KQD}\)

Do đó:ΔQAB đồng dạng với ΔQKD

=>\(\dfrac{QB}{QD}=\dfrac{AB}{KD}=\dfrac{DC}{KD}\)

=>\(\dfrac{QD}{QB}=\dfrac{KD}{DC}\)

 

14 tháng 7 2022

tên hay nhỉ