K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2022

Hình Tự Vẽ nhe

a)

Tam Giác ABC có:

E là trung điểm của AB (gt)

K là trung điểm của AC(gt)

=> EK là đường trung bình của tam giác ABC

=> EK//BC ( tính chất đường trung bình của tam giác )

b)

Tứ giác ABMC có:

BM//AC ( Bx//AC; M thuộc Bx)

CM//AB ( Cy//AB; M thuộc Cy )

Góc A = 90 độ (gt)

=> tứ giác ABMC là Hình chữ nhật

=> AB//MC (tính chất hình chữ nhật )

c)

Ta có: AB // KO ( Từ K vẽ đường thẳng song song với AB cắt BC tại O )

mà AB//MC(cmt) => MC//KO

Tam Giác ABC có:

K là trung điểm của AC (gt)

KO // AB ( Từ K vẽ đường thẳng song song với AB cắt BC tại O )

=> KO là đường trung bình của tam giác ABC 

=> O là trung điểm của BC ( tính chất đường trung bình trong tam giác )

tam giác AMC có:

K là trung điểm của AC (gt)

KO//MC (cmt)

=> KO là đường trung bình của tam giác AMC => O là trung điểm của AM ( tính chất đường trung bình trong tam giác )

Vì tứ giác ABMC là Hình chữ nhật => AM Cắt BC tại trung điểm của Mỗi đường mà O là trung điểm của AM và BC => AM cắt BC tại O => A;M;O Thẳng hàng

 

 

 

 

a: Xét ΔABC có AE/AB=AK/AC

nên EK//BC

b: Xét tứ giác ABMC có

AB//MC

AC//MB

góc BAC=90 độ

=>ABMC là hình chữ nhật

c: Xét ΔCAB co

K là trung điểm của CA

KO//AB

=>O là trung điểm của BC

ABMC là hình chữ nhật

=>AM cắt BC tại trung điểm của mỗi đường

=>A,O,M thẳng hàng

24 tháng 7 2017

viết sai và thiếu đề hết r bn nạ!

Bài 2: 

a: Xét ΔABC có 

N là trung điểm của BC

M là trung điểm của AB

Do đó: NM là đường trung bình

=>NM//AC

hay NM//EF

Ta có: ME⊥AC

NF⊥AC

Do đó: ME//NF

Xét tứ giác MEFN có 

ME//FN

MN//FE

Do đó: MEFN là hình bình hành

Suy ra: ME=NF

b: Ta có: MEFN là hình bình hành

nên MN=EF

12 tháng 10 2021

Cho t/giác ABC cân tại A. Trên cạnh AB lấy điểm E. Trên tia đối của tia CA lấy điểm F sao cho CF=BE. Vẽ tia Bx vuông góc AB & Cy vuông góc AC. Gọi I là giao điểm của Bx và Cy

a, C/m t/giác IEF cân 

b, Vẽ qua E đường thẳng song song với BC cắt AC tại D. C/m CD=CF

c, Gọi H là Giao điểm của EF và BC. C/m E, F đối xứng qua IH

Câu a ,b mình biết làm rồi còn câu c nữa thôi. SIN LOI MINH KO BIET LAM

a: BC=căn 6^2+8^2=10cm

AM là phân giác

=>MB/AB=MC/AC

=>MB/3=MC/4=10/7

=>MB=30/7cm; MC=40/7cm

b: Xét ΔAMC và ΔNMB có

góc MAC=góc MNB

góc AMC=góc NMB

=>ΔAMC đồng dạng với ΔNMB

 

a: Xét ΔCAB có

E,M lần lượt là trung điểm của CA,CB

=>EM là đường trung bình của ΔCAB

=>EM//AB và \(EM=\dfrac{AB}{2}\)

\(EM=\dfrac{AB}{2}=\dfrac{4}{2}=2\left(cm\right)\)

b: Xét tứ giác ABDE có

DE//AB

BD//AE

Do đó: ABDE là hình bình hành

Hình bình hành ABDE có \(AB=AE\left(=\dfrac{AC}{2}\right)\)

nên ABDE là hình thoi

Hình thoi ABDE có \(\widehat{BAE}=90^0\)

nên ABDE là hình vuông

=>\(S_{ABDE}=AB^2=4^2=16\left(cm^2\right)\)

c: BAED là hình vuông

=>BD//AE và BD=AE

BD//AE

E\(\in\)AC

Do đó: BD//CE

BD=AE

AE=CE

Do đó: BD=CE

Xét tứ giác BDCE có

BD//CE

BD=CE

Do đó: BDCE là hình bình hành

=>BE=CD

ABDE là hình vuông

=>AD cắt BE tại trung điểm của mỗi đường

=>I là trung điểm chung của AD và BE

=>\(BI=\dfrac{1}{2}BE\)

Xét ΔABC có

AM,BE là đường trung tuyến

AM cắt BE tại K

Do đó: K là trọng tâm của ΔABC

=>\(BK=\dfrac{2}{3}BE\)

\(\dfrac{BI}{BK}=\dfrac{\dfrac{1}{2}BE}{\dfrac{2}{3}BE}=\dfrac{1}{2}:\dfrac{2}{3}=\dfrac{3}{4}\)

=>\(BI=\dfrac{3}{4}BK\)

BI+IK=BK

=>\(\dfrac{3}{4}BK+IK=BK\)

=>\(IK=\dfrac{1}{4}BK=\dfrac{1}{4}\cdot\dfrac{2}{3}\cdot BE=\dfrac{1}{6}BE\)

mà BE=CD

nên \(IK=\dfrac{1}{6}CD\)

=>CD=6IK