K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2021

a: ta có: \(P=x^2+10x+27\)

\(=x^2+10x+25+2\)

\(=\left(x+5\right)^2+2\ge2\forall x\)

Dấu '=' xảy ra khi x=-5

4 tháng 12 2018

Ta có: M =  x 2  +  y 2  – x + 6y + 10 = ( y 2  + 6y + 9) + ( x 2  – x + 1)

= y + 3 2  + ( x 2  – 2.1/2 x + 1/4) + 3/4 =  y + 3 2  + x - 1 / 2 2  + 3/4

Vì  y + 3 2  ≥ 0 và  x - 1 / 2 2  ≥ 0 nên  y + 3 2  +  x - 1 / 2 2  ≥ 0

⇒ M =  y + 3 2  +  x - 1 / 2 2  + 3/4 ≥ 3/4

⇒ M = 3/4 khi Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy M = 3/4 là giá trị nhỏ nhất tại y = -3 và x = 1/2

22 tháng 2 2019

Chọn B.

Phương pháp:

Biến đổi đẳng thức đã cho để đưa về dạng phương trình đường tròn (C) tâm I bán kính R.

Từ đó ta đưa bài toán về dạng bài tìm M x ; y ∈ C  để O M - a lớn nhất hoặc nhỏ nhất.

Xét các trường hợp xảy ra để tìm a.

Cách giải: 

11 tháng 6 2018

b) Ta có: P = x2 + y2 – 2x + 6y+ 12

P = (x2 – 2x + 1) + (y2 + 6y + 9) + 2

P = (x – 1)2 + (y + 3)2 + 2 ≥ 2 vì (x – 1)2 ≥ 0; (y + 3)2 ≥ 0, với mọi x, y

Vậy giá trị nhỏ nhất của P bằng 2

Dấu “=” xảy ra khi x – 1 = 0 và y + 3 = 0 ⇒ x = 1 và y = -3

a) \(P=x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\)

\(MinP=4\Leftrightarrow x-1=0\Rightarrow x=1\)

b) \(Q=2x^2-6x\)

\(=2\left(x^2-3x\right)\)

\(=2\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)\)

\(=2\left(\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right)\)

\(=-\frac{9}{2}-2\left(x-\frac{3}{2}\right)^2\le\frac{-9}{2}\)

\(MinQ=\frac{-9}{2}\Leftrightarrow x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)

9 tháng 8 2016

M=x^2+y^2-x+6y+10

M=(x^2-x+1/4)+(y^2+6y+9)+3/4

M=(x-1/2)^2+(y+3)^2+3/4

\(minM=\frac{3}{4}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}\)

16 tháng 11 2021

\(P=x^2-2x+1+y^2+6y+9+2\)

\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)

Dấu '=' xảy ra khi x=1 và y=-3

27 tháng 12 2021

Bài 1: 

\(A=x^2+6x+9+x^2-10x+25\)

\(=2x^2+4x+34\)

\(=2\left(x^2+2x+17\right)\)

\(=2\left(x+1\right)^2+32>=32\forall x\)

Dấu '=' xảy ra khi x=-1

27 tháng 12 2021

giải cho mình bài 2 lun đc ko

 

27 tháng 3 2017

a) Từ M = x − 3 2 2 + 31 4 ≥ 31 4 ⇒ M min = 31 4 ⇔ x = 3 2 .  

b) Ta có N = ( x   +   2 y ) 2   +   ( y   –   2 ) 2   +   ( x   +   4 ) 2   –   120   ≥   -   120 .

Tìm được N min  = -120 Û x = -4 và y = 2.

21 tháng 9 2021

\(a,P=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)

Dấu \("="\Leftrightarrow x=1\)

\(b,Q=2x^2-6x=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}-\dfrac{9}{4}\right)=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)

Dấu \("="\Leftrightarrow x=\dfrac{3}{2}\)

\(c,M=\left(x^2-x+\dfrac{1}{4}\right)+\left(y^2+6y+9\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)

a: Ta có: \(P=x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi x=1

24 tháng 5 2021

\(x^2+y^2+xy=3\)

Có \(x^2+y^2\ge2xy\) \(\Rightarrow3=x^2+y^2+xy\ge2xy+xy\) \(\Leftrightarrow xy\le1\)

\(x^2+y^2\ge-2xy\) \(\Rightarrow3=x^2+y^2+xy\ge-2xy+xy\) \(\Leftrightarrow-3\le xy\) 

Đặt A= \(x^2+y^2-xy=\left(3-xy\right)-xy=3-2xy\)

mà \(-3\le xy\le1\) \(\Rightarrow9\ge3-2xy\ge1\)

=> minA=1 <=> \(\left\{{}\begin{matrix}xy=1\\x=y\end{matrix}\right.\) <=>x=y=1

maxA=9 <=>\(\left\{{}\begin{matrix}xy=-3\\x=-y\end{matrix}\right.\) <=>\(\left(x;y\right)=\left(\sqrt{3};-\sqrt{3}\right);\left(-\sqrt{3};\sqrt{3}\right)\)

NV
24 tháng 5 2021

Đặt \(P=x^2+y^2-xy\)

\(\Rightarrow\dfrac{P}{3}=\dfrac{x^2+y^2-xy}{3}=\dfrac{x^2+y^2-xy}{x^2+y^2+xy}\)

\(\dfrac{P}{3}=\dfrac{3x^2+3y^2-3xy}{3\left(x^2+y^2+xy\right)}=\dfrac{x^2+y^2+xy+2\left(x^2+y^2-2xy\right)}{3\left(x^2+y^2+xy\right)}\)

\(\dfrac{P}{3}=\dfrac{1}{3}+\dfrac{2\left(x-y\right)^2}{3\left(x^2+y^2+xy\right)}\ge\dfrac{1}{3}\Rightarrow P\ge1\)

\(P_{min}=1\) khi \(x=y=1\)

\(\dfrac{P}{3}=\dfrac{x^2+y^2-xy}{x^2+y^2+xy}=\dfrac{3\left(x^2+y^2+xy\right)-2\left(x^2+y^2+2xy\right)}{x^2+y^2+xy}=3-\dfrac{2\left(x+y\right)^2}{x^2+y^2+xy}\le3\)

\(\Rightarrow P\le9\)

\(P_{max}=9\) khi \(\left(x;y\right)=\left(\sqrt{3};-\sqrt{3}\right);\left(-\sqrt{3};\sqrt{3}\right)\)