K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2017

AB//BC ?

26 tháng 2 2017

 Trước tiên kẻ AM cắt CD tại I 

Ta xét tam giác AMB và IMD 
Hai tam giác đó bằng nhau vì MB=MD (gt) và góc AMB=IMD (đđ) và góc ABM=IDM (so le trong vì AB//CD) 

Vì vậy mà AB=ID và MA=MI 

Xét tam giác AIC có MA=MI và NA=NC nên MN là đường trung bình của tam giác AIC nên MN//CI và MN=(1/2)CI 

Do CI=CD-ID cũng như CI=CD-AB (do AB=ID cmt) và MN=(1/2)CI 
nên MN=(1/2)(CD-AB)

14 tháng 4 2018

Kẻ BH ^ CD tại H Þ BH = B C 2  = 4cm.

Tính được SABCD = 22cm2

a: Xét ΔABD có AB=AD

nên ΔABD cân tại A

Suy ra: \(\widehat{ABD}=\widehat{ADB}\)

mà \(\widehat{ABD}=\widehat{BDC}\)

nên \(\widehat{ADB}=\widehat{CDB}\)

hay DB là tia phân giác của \(\widehat{ADC}\)

 

27 tháng 8 2021

bày mình câu b với ạ!

9 18 20 30 h a b

  ( mk vẽ hình hơi xấu, mong bạn thông cảm )

   Giải:

- Gọi chiều cao hình thang là h, ta có:

            \(h=\sqrt{18^2-a^2}=\sqrt{324-a^2}\)

            \(h=\sqrt{20^2-b^2}=\sqrt{400-b^2}\)

 \(\Rightarrow\sqrt{324-a^2}=\sqrt{400-b^2}\)

 \(\Leftrightarrow324-a^2=400-b^2\Rightarrow b^2-a^2=76\)

      Ta có độ dài a+b=30-9=21cm

 \(\Rightarrow\left(a+b\right)\left(b-a\right)=76\Rightarrow b-a=\dfrac{76}{21}\)

 \(\Rightarrow a=\left(21-\dfrac{76}{21}\right):2=\dfrac{365}{42}\approx8,69\)

 \(\Rightarrow b=21-\dfrac{365}{42}=\dfrac{517}{42}\approx12,309\)

  Áp dụng 2 công thức tính h, ta có:

  \(h=\sqrt{324-8,69^2}\approx15,763\)

  \(h=\sqrt{400-12,309^2}\approx15,763\)

 Vậy diện tích hình thang ABCD là:

       \(\dfrac{\left(9+20\right).15,763}{2}=228,5635cm^2\) ( làm tròn )

13 tháng 9 2017


Chọn C

1 tháng 9 2019

Hạ CH và DK vuông góc với AB

Ta có:

A K = B H = 1 2 A D = 1 c m  

Từ đó: CD = 2,5cm

C H = 3 c m

S A B C D = A B + C D . C D 2 = 7 3 2 c m 2

6 tháng 8 2022

Gửi bạn lời giải. Có gì sai sót thì bạn góp ý nhé!

Kẻ \(\)$\(CH \perp AB\)$ tại H, $\(DK \perp AB\)$ tại K.

Áp dụng định lí Pytago vào tam giác ABC vuông tại C, ta có:

$\(AC^2=AB^2-BC^2=26^2-10^2=576\)$

Áp dụng hệ thức lượng vào tam giác ABC vuông tại C với đường cao CH, ta có:

$\(\dfrac{1}{CH^2}=\dfrac{1}{DK^2}=\dfrac{1}{AC^2}+\dfrac{1}{BC^2}=\dfrac{1}{100}+\dfrac{1}{576}=\dfrac{169}{14400}\)$ (do ABCD là hình thang cân)

⇒ $\(CH^2=DK^2=\dfrac{14400}{169}\)$

⇒ $\(CH=DK=\dfrac{120}{13}\)$

Áp dụng định lí Pytago vào tam giác CHB vuông tại H và tam giác AKD vuông tại K có:

$\(BH^2=AK^2=10^2-\dfrac{14400}{169}=\dfrac{2500}{169}\)$ ⇒ $\(BH=AK=\dfrac{50}{13}cm\)$ Ta có: $\(AB=AK+HK+BH=AK+CD+HK\)$ ⇒ $\(CD=AB-AK-HK=26-\dfrac{100}{13}=\dfrac{238}{13}\)$

Ta có: $\({S}_{ABCD}=\dfrac{(AB+CD).AH}{2}=\dfrac{(26+\dfrac{238}{13}).\dfrac{120}{13}}{2}=\dfrac{34560}{169} cm^2\)$