GIẢI CÁC PHƯƠNG TRÌNH SAU
A) \(13X^2+29X+17=0\)
B) \(X^2+1=X\)
C) \(X^2-1=X\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(13x^2+29x+17=0\)
<=>\(x^2+\frac{29}{13}x+\frac{17}{13}=0\)
<=>\(x^2+2.x.\frac{29}{26}+\left(\frac{29}{26}\right)^2+\frac{43}{676}=0\)
<=>\(\left(x+\frac{29}{26}\right)^2+\frac{43}{676}=0\)
Vì \(\left(x+\frac{29}{26}\right)^2\ge0\) => \(\left(x+\frac{29}{26}\right)^2+\frac{43}{676}>0\)
=>pt vô nghiệm
\(b,x^2+1=x\\ =>x^2-x+1=0\\ =>x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=0\\ =>\left(x+\frac{1}{2}\right)^2+\frac{3}{4}=0\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0=>\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
=>pt vô nghiệm
\(c,x^2-1=x\\ =>x^2-x-1=0\\ =>x^2-2.x.\frac{1}{2}+\frac{1}{4}-\frac{5}{4}=0\\ =>\left(x-\frac{1}{2}\right)^2-\frac{5}{4}=0\\ =>\left(x-\frac{1}{2}+\frac{\sqrt{5}}{2}\right)\left(x-\frac{1}{2}-\frac{\sqrt{5}}{2}=0\right)\)
\(=>\left(x-\frac{1-\sqrt{5}}{2}\right)\left(x-\frac{1+\sqrt{5}}{2}\right)=0\)
\(=>x_1=\frac{1-\sqrt{5}}{2};x_2=\frac{1+\sqrt{5}}{2}\)
B)x2+1=x
<=>x2-x+1=0
<=>x2-x+\(\frac{1}{4}+\frac{3}{4}=0\)
<=>[\(x-\left(\frac{1}{2}\right)^2\)]\(+\frac{3}{4}=0\)
Vì [\(x-\left(\frac{1}{2}\right)^2\)]>=0 với mọi x nên[\(x-\left(\frac{1}{2}\right)^2\)]+\(\frac{3}{4}>=\frac{3}{4}\)>0 với mọi x
Vậy phương trình vô ngiệm
Giải các phương trình sau
a)\(x^2-2-x+\sqrt{2}=0\)
b) \((1-\sqrt{2})x^2-2(1+\sqrt{2})x+1+3\sqrt{2}=0\)
a: \(x^2-2-x+\sqrt{2}=0\)
=>\(\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)-\left(x-\sqrt{2}\right)=0\)
=>\(\left(x-\sqrt{2}\right)\left(x+\sqrt{2}-1\right)=0\)
=>\(\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}+1\end{matrix}\right.\)
b: \(\left(1-\sqrt{2}\right)x^2-2\left(1+\sqrt{2}\right)x+1+3\sqrt{2}=0\)
\(\Delta=\left(-2-2\sqrt{2}\right)^2-4\left(1-\sqrt{2}\right)\left(1+3\sqrt{2}\right)\)
\(=12+8\sqrt{2}+4\left(\sqrt{2}-1\right)\left(3\sqrt{2}+1\right)\)
\(=12+8\sqrt{2}+4\left(6+\sqrt{2}-3\sqrt{2}-1\right)\)
\(=12+8\sqrt{2}+24-8\sqrt{2}-4=32>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{2\left(1+\sqrt{2}\right)-4\sqrt{2}}{2\left(1-\sqrt{2}\right)}=1\\x_2=\dfrac{2\left(1+\sqrt{2}\right)+4\sqrt{2}}{2\left(1-\sqrt{2}\right)}=-7-4\sqrt{2}\end{matrix}\right.\)
a.
\(\Leftrightarrow3x^3+3x^2+3x=-1\)
\(\Leftrightarrow x^3+3x^2+3x+1=-2x^3\)
\(\Leftrightarrow\left(x+1\right)^3=\left(-\sqrt[3]{2}x\right)^3\)
\(\Leftrightarrow x+1=-\sqrt[3]{2}x\)
\(\Leftrightarrow\left(1+\sqrt[3]{2}\right)x=-1\)
\(\Leftrightarrow x=-\dfrac{1}{1+\sqrt[3]{2}}\)
b.
\(\Leftrightarrow x^3-x^2+x+2x^2-2x+2=0\)
\(\Leftrightarrow x\left(x^2-x+1\right)+2\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\Rightarrow x=-2\\x^2-x+1=0\left(vn\right)\end{matrix}\right.\)
b) Ta có: \(x^3+x^2-x+2=0\)
\(\Leftrightarrow x^3+2x^2-x^2-2x+x+2=0\)
\(\Leftrightarrow x^2\left(x+2\right)-x\left(x+2\right)+\left(x+2\right)=0\)
\(\Leftrightarrow x+2=0\)
hay x=-1
b) Ta có: \(x^3+x^2-x+2=0\)
\(\Leftrightarrow x^3+2x^2-x^2-2x+x+2=0\)
\(\Leftrightarrow x^2\left(x+2\right)-x\left(x+2\right)+\left(x+2\right)=0\)
\(\Leftrightarrow x+2=0\)
hay x=-2
a)
\(2x-1+5\left(3-x\right)>0\\ 2x-2+15-5x>0\\ -3x+13>0\\ x< \dfrac{13}{3}.\)
a.\(2\sqrt{12x}-3\sqrt{3x}+4\sqrt{48x}=17\)
=>\(4\sqrt{3x}-3\sqrt{3x}+16\sqrt{3x}=17\)
=>\(17\sqrt{3x}=17\)
=>\(\sqrt{3x}=1\)
=>\(x=\dfrac{1}{3}\)
a) ĐKXĐ: \(x^2-1\ge0\)
Đặt \(\sqrt{x^2-1}=t\left(t\ge0\right)\)
\(\Rightarrow t=t^2\Rightarrow t\left(t-1\right)=0\Rightarrow\left[{}\begin{matrix}t=0\\t=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-1}=0\\\sqrt{x^2-1}=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\pm1\\x=\pm\sqrt{2}\end{matrix}\right.\)
b) ĐKXĐ: \(x\ge2\)
Ta có: \(\sqrt{x-2}+\sqrt{x-3}\ge0\) mà \(\sqrt{x-2}+\sqrt{x-3}=-5< 0\Rightarrow\) không có x thỏa
c) \(\sqrt{x^2+4x+4}+\left|x-4\right|=0\)
\(\Rightarrow\left|x+2\right|+\left|x-4\right|=0\) mà \(\left|x+2\right|+\left|x-4\right|\ge0\Rightarrow\left\{{}\begin{matrix}x+2=0\\x-4=0\end{matrix}\right.\)
\(\Rightarrow\) không có x thỏa
b) 5x(x-2000)-x+2000=0
\(\Rightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\\ \Rightarrow\left(x-2000\right)\left(5x-1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-2000=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0+2000\\5x=0+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2000\\5x=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2000\\x=\dfrac{1}{5}\end{matrix}\right.\)