K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2017

ko hiểu cái quy luật của nó

25 tháng 2 2017

Ta có:\(\frac{1}{2.9}=\frac{1}{2}-\frac{1}{9}\)

\(\frac{1}{9.7}=\frac{1}{9}-\frac{1}{7}\)

\(⋮\)

\(\frac{1}{252.504}=\frac{1}{252}-\frac{1}{504}\)

\(A=\frac{1}{2}-\frac{1}{9}+\frac{1}{9}-\frac{1}{7}+\frac{1}{7}-...............+\frac{1}{252}-\frac{1}{504}\)

\(A=\frac{1}{2}-\frac{1}{504}\)

\(A=\frac{251}{504}\)

25 tháng 2 2017

\(\frac{101}{1018}\)

27 tháng 2 2017

B= \(\frac{1}{2}-\frac{1}{504}=\frac{251}{504}\)

3 tháng 3 2018

Không Tên làm rõ được không

A =\ dfrac {1} {2.9} + \ dfrac {1} {9.7} + \ dfrac {1} {7.19} + ... + \ dfrac {1} {252.509}91+71+91+.+91

A = 2. (\ dfrac {1} {4.9} + \ dfrac {1} {9.14} + \ dfrac {1} {14.19} + ... + \ dfrac {1} {504.509}91+41+91+.+91)

A =\ dfrac {2} {5}52(\ dfrac {1} {4} - \ dfrac {1} {9} + \ dfrac {1} {9} - \ dfrac {1} {14} + \ dfrac {1} {14} - \ dfrac {1} {19} + ... + \ dfrac {1} {504} - \ dfrac {1} {509}41-91+91-41+41-91+.+41-0 91)

A =\ dfrac {2} {5}52(\ dfrac {1} {4} - \ dfrac {1} {509}41-0 91)

A =\ dfrac {2} {5}52(\ dfrac {509} {2036} - \ dfrac {4} {2036}69-64)

A =\ dfrac {2} {5}52.\ dfrac {505} {2036}65

A =\ dfrac {101} {1018}81

21 tháng 6 2019

A=7/81

19 tháng 6 2019

Đặt \(A=\frac{1}{2.9}+\frac{1}{9.7}+\frac{1}{7.19}+...+\frac{1}{252.509}\)

\(\Leftrightarrow A=\frac{2}{5}.\left(\frac{5}{4.9}+\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{504.509}\right)\)

\(\Leftrightarrow A=\frac{2}{5}.\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{504}-\frac{1}{509}\right)\)

\(\Leftrightarrow A=\frac{2}{5}.\left(\frac{1}{4}-\frac{1}{509}\right)\)

\(\Leftrightarrow A=\frac{2}{5}.\frac{505}{2036}\)

\(\Leftrightarrow A=\frac{101}{1018}\)

~ Hok tốt ~

19 tháng 6 2019

#)Giải :

\(A=\frac{1}{2.9}+\frac{1}{9.7}+\frac{1}{7.19}+...+\frac{1}{252.509}\)

\(A=\frac{2}{5}\left(\frac{5}{4.9}+\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{504.509}\right)\)

\(A=\frac{2}{5}\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+...+\frac{1}{504}-\frac{1}{509}\right)\)

\(A=\frac{2}{5}\left(\frac{1}{4}-\frac{1}{509}\right)\)

\(A=\frac{2}{5}\times\frac{505}{2036}\)

\(A=\frac{101}{1018}\)

13 tháng 5 2015

1/2 A=1/2 (1/(2.9)+1/(7.9)+1/(7.19)+...+1/(252.509))

        =1/2 .1/(2.9)+1/2.1/(7.9)+1/2.1/(7.19)+...+1/2.1/(252.509)

        =1/(2.2.9)+1/(9.7.2)+1/(2.7.19)+...+1/(2.252.509)

        =1/(4.9)+1/(9.14)+1/(14.19)+...+1/(504.509)

        =1/5(5/(4.9)+5/(9.14)+5/(14.19)+...+5/(504.509))

        =1/5(1/4-1/9+1/9-1/14+1/14-1/19+...+1/504-1/509)

        =1/5(1/4-1/509)=101/2036

=>A=2.101/2036=101/1018

17 tháng 8 2016

Bài này khoai nhỉ...
Đặt A là tổng đã cho:
A = 1/2.9 + 1/9.7 + 1/7.19 + 1/19.17 + .... + 1/252.509
Ngó nghiêng...., có nhận xét rằng số hạng thứ 2 (tức là 1/9.7) có vẻ "ngoại lai", thử bỏ riêng nó ra xem nào....
Đặt B = 1/2.9 + 1/7.19 + 1/19.17 + .... + 1/252.509
Khi đó, A = 1/9.7 + B.
Xét tổng B.
Oreka, công thức tổng quát cho số hạng của B đây: với n \geq 1 thì số hạng thứ n bằng: 1/{[2+5.(n-1)].[9+10.(n-1)]}
Bây giờ, bạn có thể tự làm tiếp được rùi.... 

6 tháng 2 2016

7A=1/2-1/509=507/1018

1 tháng 10 2016

trời

anh ơi anh anh dẹp cho em nhờ

30 tháng 9 2016

bạn viết sai đề rồi . phải là 7 . 9 chứ