Cho đương tròn(O, R), dây AB cố định không đi qua tâm. C là điểm nằm trên cung nhỏ AB sao cho cung AC không lớn hơn cung BC. Kẻ dây CD vuông góc với AB tại H. Gọi điểm K là hình chiếu vuông góc của C trên đường thẳng DA.
a) Chứng minh: Bốn điểm A, H, C, K cùng thuộc một đường tròn.
b) Chứng minh: CD là tia phân giác của góc BCK
c) KH cắt BD tại E. Chứng minh: CE vuông góc BD
d) Khi điểm C di chuyển trên cung nhỏ AB. Xác định vị trí của điểm C để CK. AB + CE. DB có giá trị lớn nhất?
a, Xét tứ giác AKCH có: \(\widehat{AKC}+\widehat{AHC}=90+90=180\)=> tứ gác AKCH nội tiếp
b,Tứ giác AKCH nội tiếp => \(\widehat{HCK}=\widehat{HAD}\)(góc trong và góc ngoài đỉnh đối diện)
Mặt khác: \(\widehat{HAD}=\widehat{BCD}=\frac{1}{2}sđ\widebat{BD}\)
=> \(\widehat{BCD}=\widehat{ACD}\)=> CD là phân giác \(\widehat{KCB}\)
c, Tứ giác AKCH nội tiếp: => \(\widehat{CKE}=\widehat{CAH}\)
Mà: \(\widehat{CDB}=\widehat{CAH}=\frac{1}{2}sđ\widebat{BC}\)
=> \(\widehat{CKE}=\widehat{CDE}\)=> tứ giác CKDE nội tiếp
=> \(\widehat{CKD}+\widehat{CED}=180\Rightarrow\widehat{CED}=180-\widehat{CKD}=180-90=90\)
=> \(CE⊥BD\)(ĐPCM)
d, em xem lại xem có gõ sai đề không nhé
Câu d) Khi C di chuyển trên cung nhỏ̉ AB. Xác định vị trí C để CK.AD+CE.DB có giá trị lớn nhất.
Nhờ mọi người giải dùm e với.