K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2017

Áp dụng BĐT c-s dạng engel

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=9\)

7 tháng 11 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(a^3+b^3\right)\left(a+b\right)\ge\left(a^2+b^2\right)^2\)

\(\left(a^2+b^2\right)^2\ge\dfrac{\left(a+b\right)^2}{4}=\dfrac{1}{4}\)

\(\Rightarrow VT=a^3+b^3\ge\dfrac{1}{4}=VP\)

Xảy ra khi \(a=b=\dfrac{1}{2}\)

15 tháng 10 2016

Ta có : \(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2\Rightarrow\sqrt{a^2+b^2}\ge\frac{\sqrt{2}}{2}\left(a+b\right)\)

\(\sqrt{b^2+c^2}\ge\frac{\sqrt{2}}{2}\left(b+c\right)\)

\(\sqrt{c^2+a^2}\ge\frac{\sqrt{2}}{2}\left(c+a\right)\)

\(\Rightarrow\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\ge\frac{\sqrt{2}}{2}.2.\left(a+b+c\right)=\sqrt{2}\)

15 tháng 10 2016

@@ minh cung moi tim ra huong giai nhung chua hieu cach giai cua ban 

15 tháng 4 2015

đề này sai bét .ngồi đến năm sau cũng trả giải được

20 tháng 2 2018

Cô si: \(a+b+c\ge3\sqrt[3]{abc}\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

Nhân theo vế: 

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\sqrt[3]{abc\cdot\frac{1}{abc}}=9\)

"=" khi a=b=c

22 tháng 2 2018

tao khong biet

29 tháng 8 2016

Trong phép chia cho 3 : số dư có thể là 0 ; 1 ; 2

Trong phép chia cho 4 : số dư có thể là 0 ; 1 ; 2 ; 3

Trong phép chia cho 5 : số dư có thể là 0 ; 1 ; 2 ; 3 ; 4

7 tháng 9 2017

a) Chia cho 3: 0, 1, 2

Chia cho 4: 0, 1, 2, 3

Chia cho 5: 0, 1, 2, 3, 4

b) Số chia hết cho 3: 3k (k\(\in\)N)

Số chia cho 3 dư 1: 3k + 1 (k\(\in\)N)

Số chia cho 3 dư 2: 3k + 2 (k\(\in\)N)