cho 2 đg tròn (O);(O') tiếp xúc ngoài tại A. Đt OO' cắt đg tròn (O) tại B và cắt đg tròn (O') tại C. Vẽ DE là tiếp tuyến chung của 2 đg tròn (D ϵ đg tròn (O); E ϵ đg tròn (O')). Gọi M là gđ của BD và CE.
CMR:
a, BM.MD=MC.ME
b, Bt bk của đg tròn (O) và đg tròn (O') lần lượt là 4,5cm;2cm.Tính độ dài DE
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
12 tháng 3 2023
a: ΔODE cân tại O
mà OI là trung tuyến
nên OI vuông góc DE
góc OIA=góc OBA=góc OCA=90 độ
=>O,I,B,A,C cùng thuộc đường tròn đường kính OA
b: ĐIểm K ở đâu vậy bạn?
13 tháng 7 2017
xét tam giác OBA vuông tại B có
OB^2=OK.OA (hệ thức lượng)
=> OK= OB^2 / OA =5^2/10 =2.5 (CM)
xog rùi nhé OB= 5 cm vì là bán kính nhé.
chúc bn hc tốt
15 tháng 8 2023
Xét (I) có
ΔADO nội tiếp
AO là đường kính
=>ΔADO vuông tại D
góc ADC=góc AHC=90 độ
=>AHDC nội tiếp
Xét ΔOHC vuông tại H và ΔODA vuông tại D có
OC=OA
góc HOC chung
=>ΔOHC=ΔODA
=>OH=OD
Xét ΔOAC có OH/OA=OD/OC
nên HD//AC
Xét tứ giác AHDC có
HD//AC
góc HAC=góc DCA
=>AHDC là hình thang cân
a) Kẻ tiếp tuyến chung của hai đường tròn tại \(A\). Đường này cắt \(DE\) tại \(I\).
Theo tính chất hai tiếp tuyến cắt nhau thì ta có \(IA=ID\) và \(IA=IE\) do đó tam giác \(ADE\) có \(IA=\dfrac{DE}{2}\) suy ra tam giác \(ADE\) vuông tại \(A\).
Tứ giác \(ADME\) có \(\widehat{ADM}=\widehat{DAE}=\widehat{AEM}=90^o\) do đó \(ADME\) là hình chữ nhật.
Hình chữ nhật \(ADME\) có hai đường chéo cắt nhau tại trung điểm mỗi đường mà \(I\) là trung điểm \(DE\) do đó \(I\) là trung điểm \(MA\) suy ra \(M,I,A\) thẳng hàng.
Tam giác \(MAC\) vuông tại \(A\) đường cao \(AE\) suy ra \(ME.MC=MA^2\).
Tương tự ta cũng có \(MD.MB=MA^2\) suy ra đpcm.
b) \(DE=MA\).
Xét tam giác vuông \(MBC\) đường cao \(MA\):
\(MA^2=AB.AC=9.4=36\).
Suy ra \(DE=MA=6\left(cm\right)\).