K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2018

A B C H E F

Ta có: \(AB.FC=BC.AE\Rightarrow\frac{AB}{AE}=\frac{BC}{FC}\)

\(\widehat{AB}F+\widehat{BAH}=90^0;\widehat{ABC}+\widehat{C}=90^0\Rightarrow\widehat{C}=\widehat{BAH}\)

Xét tam giác ABE và tam giác CBF ta có: 

\(\widehat{ABE}=\widehat{FBC}\)( BF là tia phân giác )

\(\widehat{BAH}=\widehat{C}\left(cmt\right)\)

\(\Rightarrow\Delta ABE~CBF\left(g-g\right)\)

\(\Rightarrow\frac{AB}{BC}=\frac{AE}{FC}\Rightarrow AB.FC=BC.AE\)

24 tháng 7 2016

A B C H 5 12 F E

\(\Delta ABC\)vuông, áp đụng Pytagore:

\(BC=\sqrt{AB^2+AC^2}=\sqrt{5^2+12^2}=\sqrt{169}=13cm\)

\(\Delta ABC\)tia phân giác góc B, áp dụng tính chất đường phân giác của một góc, dãy tỉ số bằng nhau:

\(\frac{AF}{AB}=\frac{FC}{BC}=\frac{AF+FC}{AB+BC}=\frac{AC}{5+13}=\frac{12}{18}=\frac{2}{3}\)

\(\Rightarrow AF=\frac{5.2}{3}=\frac{10}{3}cm\)

\(\Rightarrow FC=\frac{13.2}{3}=\frac{26}{3}cm\)

Vậy \(BC=13cm;AF=\frac{10}{3}cm;FC=\frac{26}{3}cm\)

24 tháng 7 2016

giúp mình nốt câu này nhé bạn: mình đã c/m được tam giác ABF đồng dạng được với HBE. c/m tam giác AEF là tam giác cân dùm mình đc không?

a: BC=căn 6^2+8^2=10cm

BF là phân giác

=>FA/AB=FC/BC

=>FA/3=FC/5=(FA+FC)/(3+5)=8/8=1

=>FA=3cm; FC=5cm

b: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạng với ΔHAC