vẽ tam giác ABC. Có góc B=70 độ, góc C=40 độ. Kẻ Cx là tia đối của tia Cd và tia Cy là tia phân giác của góc ACx. Chứng tỏ rằng Cy song song với AB.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: góc ACB + góc ACx = 180 độ (kề bù)
=>góc ACx = 180 độ - 40 độ = 140 độ
=>\(\widehat{xCy}=\widehat{ACy}=\frac{\widehat{ACx}}{2}=\frac{140^o}{2}=70^o\) (vì Cy là tia p/g của góc ACx)
b, Ta thấy \(\widehat{ABC}=\widehat{xCy}=70^o\)
Mà góc ABC và góc xCy là cặp góc đồng vị
=> AB // Cy
a, góc ACx + góc ACB = 180 (kb)
mà góc ACB = 40 (Gt)
=> góc ACx = 180 - 40 = 140
Cy là phân giác của góc ACx (gt) => góc xCy = 1/2*góc ACx = góc yCA (tc)
=> góc xCy = 1/2*140 = 70
b, góc yCA = 70 (câu a)
góc BAC = 70 (gt)
=> góc yCA = góc BAC mà 2 góc này so le trong
=> AB // Cy
a)
Ta có: ^A + ^B + ^C = 180 0
=> ^C = 1800 - ( ^B + ^C)
= 1800 - ( 700 + 400 )
= 700
Vì ^ACx là góc ngoài tg ABC
=> ^ACx = ^A + ^B = 700 + 700 = 1400
Ta có : Cy là pg ACx
=> ^C1 = ^C2 = 1/2 ^ACx = 1/2 . 1400 = 700 Hay ^xCy = 700
b)
Ta có: ^C1 = ^A = 700 ( Mà 2 góc này ở vị trí so le )
=> AB // Cy
Giải:
a) Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) ( vì 3 góc của 1 tam giác bằng \(180^o\) )
\(\Rightarrow\widehat{A}+70^o+40^o=180^o\)
\(\Rightarrow\widehat{A}+110^o=180^o\)
\(\Rightarrow\widehat{A}=70^o\)
Ta lại có: \(\widehat{A}+\widehat{B}=\widehat{ACx}\) ( vì góc ngoài của một tam giác bằng tổng 2 góc trong không kề với nó )
\(\Rightarrow\widehat{ACx}=70^o+70^o\)
\(\widehat{ACx}=140^o\)
b) Vì Cy là tia phân giác của góc \(\widehat{ACx}\) nên:
\(\widehat{ACy}=\frac{1}{2}\widehat{ACx}=70^o\)
Ta thấy \(\widehat{ACy}=\widehat{A}=70^o\) và 2 góc này ở vị trí so le trong nên AB // Cy
Vậy a) \(\widehat{ACx}=140^o\)
b) AB // Cy
Góc ACx là góc ngoài của tam giác ABC tại C
=> ACx + ACB = 180o => ACx = 180o - ACB = 180o - 40o = 140o
Cy là p/g của góc ACx => góc yCx = 1/2. góc ACx = 1/2 . 140o = 70o
=> góc ABC = yCx mà 2 góc này ở vị trí đồng vị
=> AB // Cy