xy-2x-4y= -15
giải nhanh lên mình mik cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: 5x=-4y
nên \(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{-1}{4}}\)
mà x+y=45
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{-1}{4}}=\dfrac{x+y}{\dfrac{1}{5}-\dfrac{1}{4}}=\dfrac{45}{-\dfrac{1}{20}}=900\)
Do đó: x=180; y=-225
b: Ta có: \(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{-1}{4}}\)
nên \(\dfrac{-3x}{-\dfrac{3}{5}}=\dfrac{-2y}{\dfrac{1}{2}}\)
mà -3x-2y=24
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{-3x}{-\dfrac{3}{5}}=\dfrac{-2y}{\dfrac{1}{2}}=\dfrac{-3x-2y}{-\dfrac{3}{5}+\dfrac{1}{2}}=\dfrac{24}{\dfrac{-1}{10}}=-240\)
Do đó: \(\left\{{}\begin{matrix}-3x=144\\-2y=-120\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-48\\y=60\end{matrix}\right.\)
Ta có:
xy -2x + 4y - 8 = 0 <=> (x + 4).(y - 2) = 0
=> x + 4 = 0 hoặc y - 2 = 0 => x = - 4 hoặc y = 2
Vậy: x = - 4 hoặc y = 2 để xy - 2x + 4y = 8
b,xy-x-y-4=0
xy-x-y=4
x(y-1)-y=4
x(y-1)-(y-1)=5
(y-1).(x-1)=5
Vì 5=1.5
5.1
-1.(-5)
-5.(-1)
nên thay vao BT rồi tính
\(\left|2x+3\right|=7\)
=> Các trường hợp
TH1 : \(\left|2x+3\right|=7\)
\(\left|2x\right|=7-3\)
\(\left|2x\right|=4\)
\(\left|x\right|=4:2\)
\(\left|x\right|=2\)
TH2 : \(\left|2x+3\right|=-7\)
\(\left|2x\right|=-7-3\)
\(\left|2x\right|=-10\)
\(\left|x\right|=\left(-10\right):2\)
\(\left|x\right|=-5\)
Vậy x = { 2 ; -5 }
ta có: 3x+4y-xy=-21 <=> 4y-xy=-21-3x
<=> y(4-x)=-3(7+x)
suy ra 4-x=-3 và y=7+x
suy ra x=7 ; y=14
Cách này mình làm chưa chặc chẽ cho lắm nha! mong bạn thông cảm
$A=x^2+y^2-6x+4y+20=(x^2-6x+9)+(y^2+4y+4)+7$
$=(x-3)^2+(y+2)^2+7\geq 0+0+7=7$
Vậy $A_{\min}=7$. Giá trị này đạt tại $(x-3)^2=(y+2)^2=0$
$\Leftrightarrow x=3; y=-2$
---------------------
$B=9x^2+y^2+2z^2-18x+4z-6y+30$
$=(9x^2-18x+9)+(y^2-6y+9)+(2z^2+4z+2)+10$
$=9(x^2-2x+1)+(y^2-6y+9)+2(z^2+2z+1)+10$
$=9(x-1)^2+(y-3)^2+2(z+1)^2+10\geq 10$
Vậy $B_{\min}=10$. Giá trị này đạt tại $(x-1)^2=(y-3)^2=(z+1)^2$
$\Leftrightarrow x=1; y=3; z=-1$
$C=x^2+y^2+z^2-xy-yz-xz+3$
$2C=2x^2+2y^2+2z^2-2xy-2yz-2xz+6$
$=(x^2-2xy+y^2)+(y^2-2yz+z^2)+(x^2-2xz+z^2)+6$
$=(x-y)^2+(y-z)^2+(z-x)^2+6\geq 6$
$\Rightarrow C\geq 3$
Vậy $C_{\min}=3$. Giá trị này đạt tại $x-y=y-z=z-x=0$
$\Leftrihgtarrow x=y=z$
--------------------------------------
$D=5x^2+2y^2+4xy-2x+4y+2021$
$=2(y^2+2xy+x^2)+3x^2-2x+4y+2021$
$=2(x+y)^2+4(x+y)+3x^2-6x+2021$
$=2(x+y)^2+4(x+y)+2+3(x^2-2x+1)+2016$
$=2[(x+y)^2+2(x+y)+1]+3(x^2-2x+1)+2016$
$=2(x+y+1)^2+3(x-1)^2+2016\geq 2016$
Vậy $D_{\min}=2016$ khi $x+y+1=x-1=0$
$\Leftrightarrow x=1; y=-2$
=>x.(y-2)-4y=15
=>x.(y-2)-4y-8=7
=>x.(y-2)-4.(y-2)=7
=>(y-2).(x-4)=7=1.7;7.1;-1.(-7);-7.(1)
Ta có bảng sau
Vậy (x;y)=(11;3);(5;9);(-3;-1);(3;-5)
thanks minh k cho
nhưng mình đưa -15 đâu phải 15 đâu