Cho A = 2 + 22 + 23 + 24 + ... + 2150.
a. Tìm ƯCLN ( A ; 62 )
b. Chứng tỏ rằng A không chia hết cho 4.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho A = 2 + 22 + 23 + 24 + ... + 2150.
a. Tìm ƯCLN ( A ; 62 )
b. Chứng tỏ rằng A không chia hết cho 4.
A=2+22+23+...+220A=2+22+23+...+220
2A=22+23+24+...+2212A=22+23+24+...+221
2A−A=(22+23+24+...+221)−(2+22+23+...+220)2A−A=(22+23+24+...+221)−(2+22+23+...+220)
A=221−2=24.5+1−2=(24)5.2−2=165.2−2A=221−2=24.5+1−2=(24)5.2−2=165.2−2
A=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯.......6.2−2=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯........2−2=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯...........0A=.......6¯.2−2=........2¯−2=...........0¯
Vậy chữ số tận cùng cả A là 0
2.
a, x-13=-46
=>x=(-46)+13
=>x=33
b, 4x-6=22
=>4x=22+6
=>4x=28
=>x=28:4
=>x=7
3.
a, 32=25
48=24.3
=>ƯCLN(32,48)=24=16
16=24
72=23.32
=>ƯCLN(16,72)=23=8
b,
24=23.3
60=22.3.5
=>BCNN(24,60)=23.3.5=120
72=23.32
180=22.32.5
=>BCNN(72,180)=23.32.5=360
A = 2 + 22 + 23 + … + 22004 . Chứng minh rằng A chia hết cho 3 , cho 7.
\(A=2+2^2+2^3+2^4+...+2^{60}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(A=6+2^2.\left(2+2^2\right)+...+2^{58}.\left(2+2^2\right)\)
\(A=6+2^2.6+...+2^{58}.6\)
\(A=6.\left(1+2^2+...+2^{58}\right)\)
Vì \(6⋮3\) nên \(6.\left(1+2^2+...+2^{58}\right)⋮3\)
Vậy \(A⋮3\)
_________________
\(A=2+2^2+2^3+2^4+...+2^{60}\)
\(A=\left(2+2^2+2^3+2^4\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(A=30+...+2^{56}.\left(2+2^2+2^3+2^4\right)\)
\(A=30+...+2^{56}.30\)
\(A=30.\left(1+...+2^{56}\right)\)
Vì \(30⋮5\) nên \(30.\left(1+...+2^{56}\right)⋮5\)
Vậy \(A⋮5\)
_________________
\(A=2+2^2+2^3+2^4+...+2^{60}\)
\(A=\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(A=14+...+2^{57}.\left(2+2^2+2^3\right)\)
\(A=14+...+2^{57}.14\)
\(A=14.\left(1+...+2^{57}\right)\)
Vì \(14⋮7\) nên \(14.\left(1+...+2^{57}\right)⋮7\)
Vậy \(A⋮7\)
\(#WendyDang\)
\(A=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)
\(=6+2^2.6+...+2^{98}.6=6\left(1+2^2+...+2^{98}\right)⋮6\)
\(A=2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)
\(=6+6.2^2+...+6.2^{98}\)
\(=6\left(1+2^2+...+2^{98}\right)⋮6\)
\(A=2+2^2+2^3+2^4+...+2^{100}\)
\(=2\cdot3+2^3\cdot3+...+2^{99}\cdot3\)
\(=6\left(1+2^2+...+2^{98}\right)⋮6\)
a) 62 = 2.31
ƯC(62) ={1, 2, 31, 61}
ƯC(A) = {1, 2, 4,...,2150) các phần tử của A ngoài 1, không có số lẻ nên không chứa 31
=> ƯCLN(A,62) = {2}
b) 2 không chia hết cho 4
22, 23, 24,...,2150 đều chia hết cho 2
=> A không chia hết cho 2
minh k biet xin loi ban nha!
minh k biet xin loi ban nha!
minh k biet xin loi ban nha!
minh k biet xin loi ban nha!