Cho 8 chữ số từ 0 đến 7, từ tám chữ số trên có thể lập được bao nhiêu số có 4 chữ số khác nhau đôi một và không chia hết cho 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có nên d ∈ {2;4;6;8}
·Với d=4; c=5, chọn a có 7 cách, chọn b có 6 cách nên có 7.6= 42 số thỏa mãn.
· Với d=2
1. Số cần lập có dạng chọn c có 6 cách nên có 6 số thỏa mãn.
2. Số cần lập có dạng chọn c có 6 cách nên có 6 số thỏa mãn
3. Số cần lập có dạng chọn a có 6 cách nên có 6 số thỏa mãn.
4. Số cần lập có dạng chọn a có 6 cách nên có 6 số thỏa mãn.
Như vậy với d=2 có 6+6+6+6=24 số thỏa mãn.
· Tương tự với d=6; d=8
Vậy có tất cả 42+3.24=114 số thỏa mãn.
Chọn B.
TH1: chữ số hàng đơn vị là 4, khi đó hàng chục là 5
Chọn 2 chữ số còn lại và xếp vào 2 vị trí đầu có \(A_7^2=42\) cách
TH2: chữ số hàng đơn vị khác 4 \(\Rightarrow\) có 3 cách chọn từ 2, 6, 8
Chọn chữ số còn lại có 6 cách
Hoán vị chữ số đó và cặp 45: \(2!.2!=4\) cách
\(\Rightarrow3.6.4=72\) số
Tổng: \(42+72=114\) số
Đáp án : D
Ta xét hai trường hợp sau:
+) TH1. chọn d có 3 cách,b có 4 cách, c có 3 cách nên có 3.4.3 = 36 số thỏa mãn.
+) TH2.
Với d = 0 thì chọn a có 4 cách, c có 3 cách nên có 4.3 = 12 số thỏa mãn.
Với d khác 0, chọn d có 2 cách, a có 3 cách, c có 3 cách nên có 2.3.3 = 18 số thỏa mãn.
Tóm lại có tất cả 36 + 12 + 18 = 66 số thỏa mãn.
Ta xét hai trường hợp sau:
+) TH1 , chọn d có 3 cách, b có 4 cách, c có 3 cách nên có
3.4.3 = 36 số thỏa mãn.
+) TH2.
Với d = 0 thì có 4 cách chọn a, c có 3 cách nên có 4.3 = 12 số thỏa mãn.
Với d ≠ 0, chọn d có 2 cách, a có 3 cách, c có 3 cách nên có 2.3.3 = 18 số thỏa mãn.
Tóm lại có tất cả 36 + 12 + 18 = 66 số thỏa mãn.
Chọn D,
2:
\(\overline{abcd}\)
d có 1 cách chọn
a có 3 cách chọn
b có 2 cách chọn
c có 1 cách chọn
=>Có 3*2*1*1=6 cách
1: \(\overline{abc}\)
a có 3 cách
b có 3 cách
c có 2 cách
=>Có 3*3*2=18 cách
Gọi chữ số hàng đơn vị là a
TH1: \(a=0\Rightarrow\) 3 chữ số còn lại có \(A_6^3\) cách chọn và hoán vị
TH2: \(a=5\)
\(\Rightarrow\) Chữ số hàng nghìn có 5 cách chọn (khác 5 và 0), 2 chữ số còn lại có \(A_5^2\) cách
\(\Rightarrow A_6^3+5.A_5^2\) số
\(\overline{abcd}\)
TH1: d=0
=>CÓ 6*5*4=120 cách
TH2: d=5
=>Có 5*5*4=100 cách
=>Có 120+100=220 cách
Chọn C
Số có bốn chữ số có dạng : a b c d ¯
( a≠0,a,b,c,d∈ E={0,1,2,3,4,5})
Do a b c d ¯ không chia hết cho 5 nên có 4 cách chọn d( là 1,2,3,4)
Chọn a ∈ E\{0,d} nên có 4 cách chọn a
Chọn b ∈ E\{a,d} nên có 4 cách chọn b
Chọn c ∈ E\{a,b,d} nên có 3 cách chọn c
Theo quy tắc nhân, có 4*4*4*3=192 số
\(\overline{abcde}\)
TH1: e=0
e có 1 cách chọn
Chữ số 2 có 4 cách chọn
ba chỗ còn lại có 4*3*2=24 cách
=>Có 4*24=96 cách
TH2: e=5; a=2
a,e có 1 cach
b có 4 cách
c có 3 cách
dcó 2 cách
=>Có 4*3*2=24 cách
TH3: e=5; a<>2
e có 1 cách chọn
a có 3 cách chon
số 2 có 3 cách
hai số còn lại có 3*2=6 cách
=>Có 3*3*6=54 cách
=>CÓ 96+24+54=174 số
Bài này sử dụng chỉnh hợp:
Số số có 4 chữ số lập từ 8 số trên là: 8*(8-1)(8-2)(8-3)=1680 số
Nhưng 4 số đó sẽ có nhũng số có chữ số 0 đứng đầu và đứng cuối nên ta sẽ loại ra vì đề bài tìm không chia hết cho 10
Số số có 3 chữ số lập từ 7 số trên là: 7*(7-1)(7-2)=210 số
Vậy có thể lập 1680 - 2*210=1260 số thỏa mãn đề bài.