cho D là 1 điểm thuộc tam giác ABC CMR AD=AB thì AD<AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhìn là bt đề sai liền luôn e ạ
AD/DB thì phải kèm AC/EC ms ra DE song song BC theo đl ta-lét ms cm bài đc á
vì AD=DB , AE=EC (gt) suy ra ED là ĐTB của tam giác ABC
MK : M là trung điểm của DE
Suy ra M nằm trên đg trung bình của tam giác ABC
1. A B C D E
Chọn điểm D như hình vẽ. Gọi E là giao điểm của AB và DC.
Ta có: \(\widehat{ADE}\)là góc ngoài của tam giác ADC => \(\widehat{ADE}>\widehat{ACD}\)(1)
Tương tự \(\widehat{BDE}>\widehat{BCD}\)(2)
(1), (2) => \(\widehat{ADB}>\widehat{ACB}\)
Mà \(\widehat{ADB}=\widehat{ABD}\)
=> \(\widehat{ABC}>\widehat{ABD}=\widehat{ADB}>\widehat{ACB}\)
=> AC>AB
A B C H
Xét tam giác ABC vuông tại A
Theo BĐT tam giác: \(AB< AC+BC\)
Và tam giác AHC vuông tại H có: \(AC< AH+CH\) (1)
\(\Rightarrow AB+AC< \left(AH+BC\right)+\left(AC+CH\right)\)
Hay \(AB+AC< \left(AH+CH+BH\right)+\left(AC+CH\right)\)
Hay \(AB+AC< AH+2CH+BH+AC\)
Bớt AC ở cả hai vế: \(AB< AH+2CH+BH\) (2)
Từ (1) và (2) suy ra \(AB+AC< 2AH+2CH+BH+CH\)
Hay \(AB+AC< 2AH+2CH+BC\)
Tới đây bí rồi.
a, Xét Δ ADB và Δ ADE có:
AD chung
góc BAD = góc EAD
AB = AE
⇛Δ ADB =Δ ADE(c-g-c)
a)Xét tam giác ABD và tam giác AED
AB=AE(Gt)
BAD=DAE(vì AD là tia p/giác)
AD là cạnh chung)
\(\Rightarrow\) tam giác ABD=tam giác AED(c.g.c)
b)Xét tam giác ADF và tam giác ADC
AF+AC(Gt)
BAD=DAE(vì AD là tia p/giác)
AD là cạnh chung
\(\Rightarrow\)tam giác ADF=tam giác ADC(c.g.c)
\(\Rightarrow\)DF=DC(cặp cạnh tương ứng)
c)Xét tam giác AMF và tam giác AMC
AF+AC(Gt)
BAD=DAE(vì AD là tia p/giác)
AD là cạnh chung
\(\Rightarrow\)tam giác AMF=tam giác AMC(c.g.c)
\(\Rightarrow\)AMF=AMC(cặp góc tương ứng)
Mà AMF+AMC=1800(kề bù)
\(\Rightarrow\)AMF=AMC=1800:2=900
Do đó Am vuông góc với CF
a)XÉT ▲ABD VÀ ▲AED CÓ:
AD CHUNG
AB=AE(GT)
GÓC BAD= GÓC EAD (AD LÀ PHÂN GIÁC)
=> ▲ABD= ▲AED(C-G-C)
Ta có: AB=AC MÀ AD=AE NÊN AB-AD=AC-AE <=> DB=EC
Xét tam giác DBC và tam giác ECB ta có : DB=EC; góc DBC = ECB (gt); BC cạnh chung
nên tam giác DBC = tam giác ECB suy ra góc DCB=góc EBC ; góc BDC = góc CEB
góc DCB=góc EBC => ABC-góc DCB= ACB -góc EBC <=> ABE = ACD HAY DBK= ECK
Xét tam giác DBK và tam giác ECK ta có : góc BDC = góc CEB; DB=EC; DBK= ECK
NÊN tam giác DBK = tam giác ECK (C-G-C)
kéo dài AD cắt BC tại E => \(AD\le AE\)(vì D thuộc tam giác ABC)
vì D thuộc tam giác ABC => Tia AD nằm giữa AB và AC=> E nằm giữa B và C
Kẻ \(AH⊥BC\)=> \(AE\le AC\)(quan hệ giữa các đường xiên trong tam giác )
=> \(AD\le AC\)
hình như đầu bài thiếu D khác B và C hoặc nếu không thì là nằm trong tam giác nhá, nếu thuộc cạnh và tam giác ABC cân tại A thì vẫn có thể bằng