Tìm x ϵ Z , biết :
a ) (x-1)⋮(x-3)
b) 7 ⋮(x-1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x - 2)(y + 1) = 7
=> x - 2, y + 1 ∈ Ư(7)
Vì x, y ∈ Z => x - 2, y + 1 ∈ Z
=> x - 2, y + 1 ∈ {1; -1; 7; -7}
Lập bảng giá trị:
x - 2 | 1 | 7 | -1 | -7 |
y + 1 | 7 | 1 | -7 | -1 |
x | 3 | 9 | 1 | -5 |
y | 6 | 0 | -8 | -2 |
Đối chiếu điều kiện x, y ∈ Z
=> Các cặp (x, y) cần tìm là:
(3; 6); (9; 0); (1; -8); (-5; -2)
3/ Ta có:
\(A=\dfrac{1-2x}{x+3}\)
\(A=\dfrac{-2x+1}{x+3}\)
\(A=\dfrac{-2x-6+7}{x+3}\)
\(A=\dfrac{-2\left(x+3\right)+7}{x+3}\)
\(A=-2+\dfrac{7}{x+3}\)
A nguyên khi \(\dfrac{7}{x+3}\) nguyên
⇒ 7 ⋮ \(x+3\)
\(\Rightarrow x+3\inƯ\left(7\right)\)
\(\Rightarrow x+3\in\left\{1;-1;7;-7\right\}\)
\(\Rightarrow x\in\left\{-2;-4;4;-10\right\}\)
+TH1:\(x\le-7\)
Ta có: \(-x-1-x+2-x-7=5x-10\Rightarrow x=\dfrac{1}{2}\) (loại)
+TH2: \(-7\le x\le-1\)
Ta có: \(-x-1-x+2+x+7=5x-10\Rightarrow x=3\)(loại)
+TH3: \(-1\le x\le2\)
Ta có: \(x+1-x+2+x+7=5x-10\Rightarrow x=5\)(loại)
+TH4: \(x>2\)
Ta có: \(x+1+x-2+x+7=5x-10\Rightarrow x=8\)(tm)
Vậy x=8
Bài 2:
a: =>x=0 hoặc x+3=0
=>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
a: ĐểA nguyên thì x^2+2x+x+2-3 chia hết cho x+2
=>-3 chia hết cho x+2
=>x+2 thuộc {1;-1;3;-3}
=>x thuộc {-1;-3;1;-5}
b: B nguyên khi x^2+x+3 chia hết cho x+1
=>3 chia hết cho x+1
=>x+1 thuộc {1;-1;3;-3}
=>x thuộc {0;-2;2;-4}
a) x thuộc Z => x+1 thuộc Z
=> x+1 thuộc Ư (4)={-4;-2;-1;1;2;4}
Ta có bảng
x+1 | -4 | -2 | -1 | 1 | 2 | 4 |
x | -5 | -3 | -2 | 0 | 1 | 3 |
b) Ta có x+5=x+2+3
Để x+5 chia hết cho x+2 thì x+2+3 chia hết cho x+2
=> 3 chia hết cho x+2
x thuộc Z => x+2 thuộc Z => x+2 thuộc Ư (3)={-3;-1;1;3}
Ta có bảng
x+2 | -3 | -1 | 1 | 3 |
x | -5 | -3 | -1 | 1 |
c) Ta có x-7=x-2-5
Để x-7 chia hết cho x-2 thì x-2-5 chia hết cho x-2
=> 5 chia hết cho x-2
Mà x thuộc Z => x-2 thuộc Z
=>x-2 thuộc Ư (5)={-5;-1;1;5}
Ta có bảng
x-2 | -5 | -1 | 1 | 5 |
x | -3 | 1 | 3 | 7 |
d) ta có 2x+5=2(x+1)+3
Để 2x+5 chia hết cho x+1 thì 2(x+1)+3 chia hết cho x+1
=> 3 chia hết cho x+1
x thuộc Z => x+1 thuộc Z => x+1 thuộc Ư (3)={-3;-1;1;3}
Ta có bảng
x+1 | -3 | -1 | 1 | 3 |
x | -4 | -2 | 0 | 2 |
d) Ta có 3x-1=3(x+2)-7
Để 3x-1 chia hết x+2 => 3(x+2)-7 chia hết x+2
=> 7 chia hết cho x+2
x thuộc Z => x+2 thuộc Z
=> x+2 thuộc Ư (7)={-7;-1;1;7}
Ta có bảng
x+2 | -7 | -1 | 1 | 7 |
x | -9 | -3 | -1 | 5 |
Bài 2:
a: =>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
bn cho mình gửi sắp đến thi học kì 2 rồi. đây là những món quà mà bn sẽ nhận đc:
1: áo quần
2: tiền
3: đc nhiều người yêu quý
4: may mắn cả
5: luôn vui vẻ trong cuộc sống
6: đc crush thích thầm
7: học giỏi
8: trở nên xinh đẹp
phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người, sau 3 ngày bn sẽ có những đc điều đó. nếu bn ko gửi tin nhắn này cho 25 người thì bn sẽ luôn gặp xui xẻo, học kì 2 bn sẽ là học sinh yếu và bạn bè xa lánh( lời nguyền sẽ bắt đầu từ khi đọc) ( mình
cũng bị ép);-;
Lời giải:
Điều kiện: $x\neq 3$
Để $A=\frac{2(x-3)+5}{3-x}=-2+\frac{5}{3-x}$ nguyên thì $\frac{5}{3-x}$ nguyên.
Với $x$ nguyên thì điều này xảy ra khi $3-x$ là ước của $5$
$\Rightarrow 3-x\in\left\{\pm 1; \pm 5\right\}$
$\Rightarrow x\in\left\{4; 2; 8; -2\right\}$ (thỏa mãn)
a/ \(\left(x-2\right)\left(y+1\right)=7\)
\(\Leftrightarrow x-2;y+1\inƯ\left(7\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2=1\\y+1=7\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=7\\y+1=1\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=-1\\y+1=-7\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=-7\\y+1=-1\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=3\\y=6\end{matrix}\right.\\\left\{{}\begin{matrix}x=9\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=-8\end{matrix}\right.\\\left\{{}\begin{matrix}x=-5\\y=-2\end{matrix}\right.\end{matrix}\right.\)
Vậy ...
b/ \(\left(2x-1\right)y-2x+1=3\)
\(\Leftrightarrow\left(2x-1\right)y-\left(2x-1\right)=3\)
\(\Leftrightarrow\left(2x-1\right)\left(y-1\right)=3\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-1=1\\y-1=3\end{matrix}\right.\\\left\{{}\begin{matrix}2x-1=3\\y-1=1\end{matrix}\right.\\\left\{{}\begin{matrix}2x-1=-1\\y-1=-3\end{matrix}\right.\\\left\{{}\begin{matrix}2x-1=-3\\y-1=-1\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=4\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=0\\y=-1\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\end{matrix}\right.\)
Vậy..