K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\text{Δ}=\left(-m\right)^2-4\left(m-1\right)\)

\(=m^2-4m+4\)

\(=\left(m-2\right)^2\)>=0 với mọi m

=>Phương trình luôn có hai nghiệm

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left(-m\right)}{1}=m\\x_1x_2=\dfrac{c}{a}=\dfrac{m-1}{1}=m-1\end{matrix}\right.\)

\(x_1^2+x_2^2=5\)

=>\(\left(x_1+x_2\right)^2-2x_1x_2=5\)

=>\(m^2-2\left(m-1\right)-5=0\)

=>\(m^2-2m-3=0\)

=>(m-3)(m+1)=0

=>\(\left[{}\begin{matrix}m-3=0\\m+1=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}m=3\\m=-1\end{matrix}\right.\)

 

8 tháng 6 2018

Đáp án A

13 tháng 3 2018

Δ=(-2)^2-4(m-3)

=4-4m+12=-4m+16

Để pt có hai nghiệm thì -4m+16>=0

=>-4m>=-16

=>m<=4

x1^2+x2^2-x1x2<7

=>(x1+x2)^2-3x1x2<7

=>2^2-3(m-3)<7

=>4-3m+9<7

=>-3m+13<7

=>-3m<-6

=>m>2

=>2<m<=4

AH
Akai Haruma
Giáo viên
17 tháng 3 2021

Lời giải:

Để PT có 2 nghiệm $x_1,x_2$ thì:

$\Delta'=(m+1)^2-(m^2-1)>0\Leftrightarrow 2m+2>0\Leftrightarrow m>-1$

Áp dụng định lý Viet:

$x_1+x_2=2(m+1)$ và $x_1x_2=m^2-1$

Khi đó, để $x_1^2+x_2^2=x_1x_2+8$

$\Leftrightarrow (x_1+x_2)^2-2x_1x_2=x_1x_2+8$

$\Leftrightarrow (x_1+x_2)^2=3x_1x_2+8$

$\Leftrightarrow 4(m+1)^2=3(m^2-1)+8$

$\Leftrightarrow m^2+8m-1=0$

$\Leftrightarrow m=-4\pm \sqrt{17}$. Vì $m>-1$ nên $m=-4+\sqrt{17}$

AH
Akai Haruma
Giáo viên
26 tháng 5 2022

Lời giải:
Để pt có nghiệm thì $\Delta'=4-m\geq 0\Leftrightarrow m\leq 4$

Áp dụng hệ thức Viet, với $x_1,x_2$ là 2 nghiệm của pt thì:

$x_1+x_2=4$

$x_1x_2=m$

Khi đó:

$x_2^2-x_1^2=18$

$\Leftrightarrow (x_2-x_1)(x_2+x_1)=18$

$\Leftrightarrow (x_2-x_1).4=18$

$\Leftrightarrow x_2-x_1=4,5$

$\Rightarrow (x_2-x_1)^2=20,25$

$\Leftrightarrow (x_2+x_1)^2-4x_1x_2=20,25$

$\Leftrightarrow 4^2-4m=20,25$

$\Leftrightarrow m=\frac{-17}{16}$ (tm)

Δ=(-4)^2-4(m^2+3m)

=16-4m^2-12m

=-4(m^2+3m-4)

=-4(m+4)(m-1)

Để phươg trình có hai nghiệm thì Δ>=0

=>-4(m+4)(m-1)>=0

=>(m+4)(m-1)<=0

=>-4<=m<=1

x1^2+x2^2=6

=>(x1+x2)^2-2x1x2=6

=>4^2-2(m^2+3m)=6

=>16-2m^2-6m-6=0

=>-2m^2-6m+10=0

=>m^2+3m-5=0

=>\(m=\dfrac{-3\pm\sqrt{29}}{2}\)

NV
9 tháng 1 2023

\(\Delta'=4-m^2-3m\ge0\Rightarrow-4\le m\le1\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m^2+3m\end{matrix}\right.\)

\(x_1^2+x_2^2=6\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\)

\(\Leftrightarrow4^2-2\left(m^2+3m\right)=6\)

\(\Leftrightarrow m^2+3m-5=0\Rightarrow\left[{}\begin{matrix}m=\dfrac{-3+\sqrt{29}}{2}>1\left(loại\right)\\m=\dfrac{-3-\sqrt{29}}{2}< -4\left(loại\right)\end{matrix}\right.\)

Vậy ko tồn tại m thỏa mãn yêu cầu đề bài

27 tháng 7 2017

c) Để phương trình (1) có hai nghiệm x1 và x2 ⇔ Δ' ≥ 0 ⇔ 4 - m ≥ 0 ⇔ m ≤ 4

Theo Vi-et ta có: Đề kiểm tra Toán 9 | Đề thi Toán 9

Ta có: x 1 2 + x 2 2  = 10 ⇔ x 1 + x 2 2 - 2x1x2 = 10

⇔ - 4 2 - 2m = 10 ⇔ 16 - 2m = 10 ⇔ m = 3 (TM)

Vậy với m = 3 thì phương trình (1) có hai nghiệm thõa mãn:  x 1 2 + x 2 2  = 10

27 tháng 6 2019

b) Gọi  x 1 ; x 2  lần lượt là 2 nghiệm của phương trình đã cho

Theo hệ thức Vi-et ta có:

Đề kiểm tra Toán 9 | Đề thi Toán 9

x 1 2 + x 2 2  - x 1 x 2  = x 1 + x 2 2 - 3x1 x2 = 4 m 2  + 3(4m + 4)

Theo bài ra:  x 1 2 + x 2 2  -  x 1   x 2 =13

⇒ 4m2 + 3(4m + 4) = 13 ⇔ 4m2 + 12m - 1 = 0

∆ m  = 122 -4.4.(-1) = 160 ⇒ ∆ m = 4 10

Phương trình có 2 nghiệm phân biệt

Đề kiểm tra Toán 9 | Đề thi Toán 9

Vậy với Đề kiểm tra Toán 9 | Đề thi Toán 9 thì phương trình có 2 nghiệm  x 1 ;  x 2  thỏa mãn điều kiện  x 1 2 + x 2 2  -  x 1   x 2  = 13