K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{BAE}\) chung

Do đó: ΔAEB∼ΔAFC(g-g)

b) Ta có: ΔAEB\(\sim\)ΔAFC(cmt)

nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AF\cdot AB=AE\cdot AC\)(đpcm)

Ta có: \(AF\cdot AB=AE\cdot AC\)(cmt)

nên \(\dfrac{AF}{AC}=\dfrac{AE}{AB}\)

Xét ΔAEF và ΔABC có

\(\dfrac{AF}{AC}=\dfrac{AE}{AB}\)(cmt)

\(\widehat{FAE}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)

loading...  loading...  loading...  

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

góc EAB chung

=>ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC

=>AE*AC=AB*AF;AE/AB=AF/AC

b: Xét ΔAEF và ΔABC có

AE/AB=AF/AC

góc A chung

=>ΔAEF đồng dạng vói ΔABC

=>\(\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{AE}{AB}\right)^2=\dfrac{1}{4}\)

=>\(S_{ABC}=4\cdot S_{AEF}\)

a: Xet ΔAEB và ΔAFC có

góc AEB=góc AFC

góc A chung

=>ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC

=>AE/AB=AF/AC

b: Xét ΔAEF và ΔABC co

AE/AB=AF/AC

góc A chung

=>ΔAEF đồng dạng với ΔABC

19 tháng 4

còn câu C nữa nè 

bạn xem bạn có giải được ko

 

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

\(\widehat{BAE}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC

b: Ta có: ΔAEB\(\sim\)ΔAFC

nên AE/AF=AB/AC
hay AE/AB=AF/AC

Xét ΔAEF và ΔABC có 

AE/AB=AF/AC

\(\widehat{EAF}\) chung

DO đó: ΔAEF\(\sim\)ΔABC

22 tháng 4 2021

AI GIÚP EM VỚI Ạ

 

 

 

 

22 tháng 4 2021

cần giải câu c ) , d) ạ

26 tháng 4 2018

a)  Xét  \(\Delta AEB\) và   \(\Delta AFC\) có:

     \(\widehat{AEB}=\widehat{AFC}=90^0\)

     \(\widehat{A}\)  chung

suy ra:   \(\Delta AEB~\Delta AFC\) (g.g)

\(\Rightarrow\)\(\frac{AE}{AF}=\frac{AB}{AC}\) \(\Rightarrow\)\(AF.AB=AE.AC\)

b)   \(\frac{AE}{AF}=\frac{AB}{AC}\)\(\Rightarrow\)\(\frac{AE}{AB}=\frac{AF}{AC}\)

Xét  \(\Delta AEF\)và   \(\Delta ABC\) có:

           \(\frac{AE}{AB}=\frac{AF}{AC}\)  (cmt)

           \(\widehat{A}\) chung

suy ra:   \(\Delta AEF~\Delta ABC\) (c.g.c)

\(\Rightarrow\)   \(\widehat{AEF}=\widehat{ABC}\)

c)   \(\Delta AEF~\Delta ABC\)

\(\Rightarrow\)\(\frac{S_{ABC}}{S_{AEF}}=\left(\frac{AB}{AE}\right)^2=\left(\frac{3}{6}\right)^2=\frac{1}{4}\)

\(\Rightarrow\)\(S_{ABC}=4S_{AEF}\)

29 tháng 3 2022

Gửi các bạn lời giải 1 bài tương tự

https://youtu.be/mjiZSkISHgA

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

\(\widehat{FAC}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC(g-g)

b) Ta có: ΔAEB\(\sim\)ΔAFC(cmt)

nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)

hay \(AE\cdot AC=AB\cdot AF\)

Ta có: \(AE\cdot AC=AB\cdot AF\)(cmt)

nên \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{BAC}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)

26 tháng 3 2023

a) xét tam giác ABD và tam giác AHF có 

góc BAD chung

Góc AFH = góc ADB (=90 độ)

=> tam giác ABD đồng dạng vs tam giác AHF (g.g)

=> AB/AD = AH/AF

=> AF.AD = AH.AD

b) xét tam giác AFC và tam giác AEB có

Góc A chung

Góc AFC = góc AEB (=90 độ)

=> tam giác AFC đồng vs tam giác AEB (g.g)

=> AF/AC = AE/AB

=> AF.AB= AE.AC

a: Xét ΔABD vuông tại  D và ΔAHF vuông tại F có

góc FAH chung

=>ΔABD đồng dạng với ΔAHF

=>AB/AH=AD/AF

=>AB*AF=AH*AD

b: Xet ΔAEB vuông tại E và ΔAFC vuông tại F có

góc EAB chung

=>ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC

=>AE*AC=AB*AF

=>AE/AB=AF/AC
=>ΔAEF đồng dạng với ΔABC

c:góc FEC=góc DAC

góc DFC=góc EBC

mà góc DAC=góc EBC

nên góc FEC=goc DFC

=>FC là phân giác của góc EFD