Cho tam giác ABC vuông tại A có AB:AC=3:4 và BC=15cm. Khi đó chu vi của tam giác ABC là ... cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có BC^2=AC^2+AB^2
Mà AB:AC=3:4
=>\(\frac{AB}{3}=\frac{AC}{4}=\frac{AB+AC}{3+4}=\frac{AC^2+AB^2}{3^2+4^2}=\frac{BC^2}{25}=\frac{100}{25}=4\)
=> AB^2=4*9=36=>AB=6cm
AC^2=4*16=67=>AC=8cm
Vậy chu vi tam giác ABC là 10+6+8=24 cm
A B C H
ÁP dụng dịnh lí pytago ta có
BC2=102=100
=>AB2+AC2=100
áp dung dãy tỉ số = nhau
AB/3 = AC/4
AB2 / 9 =AC2/16
AB2+AC2/25 =100/25=4
=>AB/3=4 =>AB=12
AC/4 =4 =>AC=16
vậy chu vi tam giác ABC
10+12+16=38(cm)
ĐS:38cm
ab / ac = 3/4
ab = 3ac/4
áp dụng định lí pitago ta có
ac^2 + ( 3ac/4)^2 = 30^2
ac = 24 cm
ab = 3*24/a =18 cm
Lời giải:
Vì $AB:AC=3:4$ nên đặt $AB=3a; AC=4a$ với $a>0$
Áp dụng định lý Pitago:
$AB^2+AC^2=BC^2$
$\Leftrightarrow (3a)^2+(4a)^2=225$
$\Leftrightarrow 25a^2=225$
$\Rightarrow a=3$ (do $a>0$)
Áp dụng hệ thức lượng trong tam giác vuông:
$AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{9a^2}{15}=\frac{9.3^2}{15}=5,4$ (cm)
$AC^2=CH.CB\Rightarrow CH=\frac{AC^2}{BC}=\frac{16a^2}{15}=\frac{16.3^2}{15}=9,6$ (cm)
Mình làm mẫu cho bạn câu a) nhé
a) Theo định lí Pytago ta có :
BC2 = AB2 + AC2
152 = AB2 + AC2
AB : AC = 3:4
=> \(\frac{AB}{3}=\frac{AC}{4}\)=> \(\frac{AB^2}{3^2}=\frac{AC^2}{4^2}\)và AB2 + AC2 = 152
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{AB^2}{3^2}=\frac{AC^2}{4^2}=\frac{AB^2+AC^2}{3^2+4^2}=\frac{15^2}{25}=\frac{225}{25}=9\)
\(\frac{AB^2}{3^2}=9\Rightarrow AB^2=81\Rightarrow AB=\sqrt{81}=9cm\)
\(\frac{AC^2}{4^2}=9\Rightarrow AC^2=144\Rightarrow AC=\sqrt{144}=12cm\)
Ý b) tương tự nhé