K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2015

 chia 315 thành 3 phần  gọi là x , y , z 

theo bài ra ta có 

                     3x = 4y = 6z và x + y + z = 315

      \(\Leftrightarrow\frac{3x}{12}=\frac{4y}{12}=\frac{6z}{12}\Leftrightarrow\frac{x}{4}=\frac{y}{3}=\frac{z}{2}\) và x + y + z = 315

Theo dãy tỉ số bằng nhau :

                           \(\frac{x}{4}=\frac{y}{3}=\frac{z}{2}=\frac{x+y+z}{4+3+2}=\frac{315}{9}=35\)

=> x = 35. 4 = 140

=> y = 35 .3 = 105

=> z = 35.2 = 70

15 tháng 11 2017

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

10 tháng 6 2015

a)  gọi 3 phần đó là x, y, z

ta có:

x/3 = y/4 = z/5  và x + y + z = 552

áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x/3 = y/4 = z/5 = (x + y + z) / (3 + 4 + 5) = 552 / 12 = 46

x/3 = 46          => x = 46 x 3 = 138

y/4 = 46         => y = 46 x 4 = 184

z/5 = 46          => z = 46 x 5  = 230

vậy 3 phần đó là:  138; 184; 230

b) gọi 2 phần đó là a, b, c

ta có:

\(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}\)  và a + b + c = 315

áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}=\frac{a+b+c}{\frac{1}{3}+\frac{1}{4}+\frac{1}{6}}=\frac{315}{\frac{3}{4}}=420\)

\(\frac{a}{\frac{1}{3}}=420\Rightarrow a=420\cdot\frac{1}{3}=140\)

\(\frac{b}{\frac{1}{4}}=420\Rightarrow b=420\cdot\frac{1}{4}=105\)

\(\frac{c}{\frac{1}{6}}=420\Rightarrow c=420\cdot\frac{1}{6}=70\)

vậy 3 phần đó là:140, 105, 70

21 tháng 12 2016

mình không biết

a)  gọi 3 phần đó là x, y, z

ta có:

x/3 = y/4 = z/5  và x + y + z = 552

áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x/3 = y/4 = z/5 = (x + y + z) / (3 + 4 + 5) = 552 / 12 = 46

x/3 = 46          => x = 46 x 3 = 138

y/4 = 46         => y = 46 x 4 = 184

z/5 = 46          => z = 46 x 5  = 230

vậy 3 phần đó là:  138; 184; 230

b) gọi 2 phần đó là a, b, c

ta có:

a phần 1/3=b phần 1/4=c phần 1/6  và a + b + c = 315

áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

a phần 1/3=b phần 1/4=c / 1/6=a+b+c phần 1/3+1/4+1/6=315 phần 3/4=420

a phần 1/3=420⇒a=140

phần 1/4=420⇒b=105

c phần 1/6=420⇒c=70

vậy............

đây là toán nâng cao lớp 7 đúng ko

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta đc:

\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{552}{12}=46\)

=>a=138; b=184; c=230

b: Gọi ba số cần tìm lần lượt là a,b,c

Theo đề, ta có: 3a=5b=6c

=>a/10=b/6=c/5

Áp dụng tính chất của DTSBN, ta đc:

\(\dfrac{a}{10}=\dfrac{b}{6}=\dfrac{c}{5}=\dfrac{a+b+c}{10+6+5}=\dfrac{315}{21}=15\)

=>a=150; b=90; c=75

AH
Akai Haruma
Giáo viên
10 tháng 2 2024

Lời giải:
Giả sử chia 315 thành 3 phần có giá trị là $a,b,c$ tỉ lệ nghịch với $3,5,6$. Theo bài ra ta có:

$a+b+c=315$

$3a=5b=6c=\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{5}}=\frac{c}{\frac{1}{6}}$

Áp dụng TCDTSBN:

$3a=5b=6c=\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{5}}=\frac{c}{\frac{1}{6}}=\frac{a+b+c}{\frac{1}{3}+\frac{1}{5}+\frac{1}{6}}=\frac{315}{\frac{7}{10}}=450$

$\Rightarrow a=450:3=150; b=450:5=90; c=450:6=90$

1 tháng 3 2020

a, Gọi 3 phần đó là \(x,y,z\)

Ta có: \(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{6}}\)và \(x+y+z=315\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{6}}=\frac{x+y+z}{\frac{1}{3}+\frac{1}{5}+\frac{1}{6}}=\frac{315}{0,7}=450\)

\(\frac{x}{\frac{1}{3}}=450\Leftrightarrow x=150\)

\(\frac{y}{\frac{1}{5}}=450\Leftrightarrow y=90\)

\(\frac{z}{\frac{1}{6}}=450\Leftrightarrow z=75\)

Vậy 3 phần đó là \(150;90;75\)

Mình làm hơi tắt, bạn thông cảm nhé!

\(\text{#TNam}\)

Gọi `3` phần của số lần lượt là `x,y,z (x,y,z \ne 0)`

`3` phần lần lượt tỉ lệ với `3:5:6`

Nghĩa là: `x/3=y/5=z/6`

Tổng của `3` phần là `315`

`-> x+y+z=215`

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`x/3=y/5=z/6=(x+y+z)/(3+5+6)=315/14=22,5`

`-> x/3=y/5=z/6=22,5`

`-> x=22,5*3=67,5 ; y=22,5*5=112,5 ; z=22,5*6=135`

3 tháng 7 2017

1) Gọi 3 phần đó là a,b,c

Theo đề bài ta có: a,b,c tỉ lệ nghịch với 3,4,5 => a,b,c tỉ lệ thuận với \(\frac{1}{3},\frac{1}{4},\frac{1}{5}\) tức là

\(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{5}}\) và a + b + c = 315

Áp dụng tính chất của dãy tỉ số bằng nhau:

Đến đây tự lm típ

2) \(\frac{x}{11}=\frac{y}{12}\Rightarrow\frac{2x}{22}=\frac{y}{12}\left(1\right)\)

\(\frac{y}{3}=\frac{z}{7}\Rightarrow\frac{y}{12}=\frac{z}{28}\left(2\right)\)

Từ (1) và (2) suy ra \(\frac{2x}{22}=\frac{y}{12}=\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{2x}{22}=\frac{y}{12}=\frac{z}{28}=\frac{2x-y+z}{22-12+28}=\frac{152}{38}=4\)

=> x = 44 ; y = 48 ; z = 112

7 tháng 7 2017

mk k hỉu câu 2 cho lắm

22 tháng 5 2019

#)Trả lời :

Câu 1 :

a) Gọi ba phần đó là a, b, c

    Theo đầu bài, ta có : a, b, c tỉ lệ thuận với 3; 4; 5 => \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)và a + b + c = 552

    Áp dụng tính chất dãy tỉ số bằng nhau ( đến đây bn tự lm típ hen )

b) Gọi ba phần đó là a, b, c

    Theo đầu bài, ta có : a, b, c tỉ lệ nghịch với 3, 4, 6 => a, b, c tỉ lệ nghịch với \(\frac{1}{3};\frac{1}{4};\frac{1}{6}\)

    => \(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}\)và a + b + c = 315 

   Áp dụng tính chất dãy tỉ số bằng nhau ( đến đây tự lm típ hen :D )

Câu 2 :

   \(\frac{x}{11}=\frac{y}{12}\Rightarrow\frac{2x}{22}=\frac{y}{12}\left(1\right)\)

   \(\frac{y}{3}=\frac{z}{7}\Rightarrow\frac{y}{12}=\frac{z}{28}\left(2\right)\)

   Từ (1) và (2) suy ra \(\frac{2x}{22}=\frac{y}{12}=\frac{z}{28}\)

   Áp dụng tính chất dãy tỉ số bằng nhau :

   \(\frac{2x}{22}=\frac{y}{12}=\frac{z}{28}=\frac{2x-y+z}{22-12+28}=\frac{152}{38}\)

\(\Rightarrow x=44;y=48;z=112\)

    #~Will~be~Pens~#

25 tháng 5 2019

1a) Gọi ba phần đó là x, y, z.

Vì x, y, z tỉ lệ với 3, 4, 5 nên \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

Áp dụng tính chất của dãy các tỉ số bằng nhau, ta có:

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{3+4+5}=\frac{552}{12}=46\)

\(\Rightarrow\hept{\begin{cases}x=46.3=138\\y=46.4=184\\z=46.5=230\end{cases}}\)

Vậy 3 phần đó là 138, 184, 230

3 tháng 1 2020

Câu hỏi của Phạm Minh Phương t - Toán lớp 7 - Học toán với OnlineMath

9 tháng 1 2022

Câu 1:

Gọi ba phần được chia từ số 470 lần lượt là x, y, z 

Có: Ba phần tỉ lệ nghịch với 3, 4, 5

⇒x3=y4=z5⇒x20=y15=z12⇒x3=y4=z5⇒x20=y15=z12 và x+y+z=470x+y+z=470

Áp dụng tính chất dãy tỉ số bằng nhau

x20=y15=z12=x+y+z20+15+12=47047=10x20=y15=z12=x+y+z20+15+12=47047=10

⇒\hept⎧⎨⎩x=200y=150z=120