A=3n-5 phần n+4 . tìm n thuộc Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A thuộc Z thì 3n - 5 chia hết n + 4
<=> 3n + 12 - 17 chia hết n + 4
=> 3.(n + 4) - 17 chia hết n + 4
=> 17 chia hết n + 4
=> n + 4 thuộc Ư(17) = {-1;1;-17;17}
=> n = {-5;-3;-21;13}
Để A là số nguyên thì :
3n-5 \(⋮\) n + 4
\(\Rightarrow\) 3n+12 - 17 \(⋮\) n + 4
\(\Rightarrow\) 3.( n + 4 ) - 17 \(⋮\) n + 4
\(\Rightarrow\) 17 \(⋮\) n + 4
Suy ra : n+4 là Ư(17) = -17 ; -1 ; 1 ; 17
Vậy n= -21 ; -5 ; -3 ; 13
Vậy n
Để các p/số là số nguyên thì
a. 8 chia hết cho n + 1
=> n + 1 thuộc Ư(8) = {-8; -4; -2; -1; 1; 2; 4; 8}
=> n thuộc {-9; -5; -3; -2; 0; 1; 3; 7}
b. 3n - 5 chia hết cho n + 4
=> 3n + 12 - 17 chia hết cho n + 4
=> 3.(n + 4) - 17 chia hết cho n + 4
mà 3.(n + 4) chia hết cho n + 4
=> 17 chia hết cho n + 4
=> n + 4 thuộc Ư(17) = {-17; -1; 1; 17}
=> n thuộc {-21; -5; -3; 13}.
Để A thuộc Z thì 3n - 5 chia hết n + 4
<=> 3n + 12 - 17 chia hết n + 4
=> 3.(n + 4) - 17 chia hết n + 4
=> 17 chia hết n + 4
=> n + 4 thuộc Ư(17) = {-1;1;-17;17}
=> n = {-5;-3;-21;13}
A=n+3 chia hết cho n+1
mà n+3 =(n+1)+2
vì n+1 chia hết cho n+1
nên A chia hết cho n+1
khi2chia hết cho n+1
suy ra n+1 thuộc ước của 2
suy ra n+1 thuộc {1;2}
mà n thuộc Z Suy ra n thuộc { 0;1}
Câu 2 dựa theo cách trên mà tự làm
\(\frac{n+3}{n+1}=\frac{n+1+2}{n+1}=\frac{n+1}{n+1}+\frac{2}{n+1}=1+\frac{2}{n+1}\)
Để \(A\in Z\)<=> n + 1 \(\in\)Ư(2) = {-1;1;-2;2}
n + 1 | -1 | 1 | -2 | 2 |
n | -2 | 0 | -3 | 1 |
\(\frac{3n-5}{n-4}=\frac{3n-12-17}{n-4}=\frac{3\left(n-4\right)-17}{n-1}=\frac{3\left(n-4\right)}{n-4}-\frac{17}{n-4}\)
Để \(B\in Z\) <=> n - 4 \(\in\)Ư(17) = {1;-1;17;-17}
n - 4 | 1 | -1 | 17 | -17 |
n | 5 | 3 | 21 | -13 |
A= (3n-12)+13:n-4=3(n-4)+13
Để A thuộc Z thì 3(n-4)phải thuộc Z
=> (n-4)thuộc Ư(3)thuộc {1,-1,3,-3}
TH1:n-4=1=>n=5(TM)
TH2:n-4=-1=>n=3(TM)
TH3:n-4=3=>n=7(TM)
TH4:n-4=-3=>n=1(TM)
Vậy n thuộc {5,3,7,1} thìA thuộc z
\(A=\frac{3n-5}{n+4}=\frac{3\left(n+4\right)-17}{n+4}=\frac{3\left(n+4\right)}{n+4}-\frac{17}{n+4}=3-\frac{17}{n+4}\in Z\)
\(\Rightarrow17⋮n+4\)
\(\Rightarrow n+4\inƯ\left(17\right)=\left\{1;-1;17;-17\right\}\)
\(\Rightarrow n\in\left\{-3;-5;13;-21\right\}\)
Ta có:\(A\in Z\Leftrightarrow\frac{3n-5}{n+4}\in Z\Leftrightarrow\frac{3n+12-17}{n+4}\in Z\Leftrightarrow\frac{3\left(n+4\right)}{n+4}-\frac{17}{n+4}\in Z\Leftrightarrow3-\frac{17}{n+4}\in Z\Leftrightarrow\frac{-17}{n+4}\in Z\)
\(\Leftrightarrow n+4\inƯ17\Leftrightarrow n+4\in\left\{-1;-17;1;17\right\}\)
Thay \(n+4=-1\Rightarrow n=-5\) (TM)
\(n+4=-17\Rightarrow n=-21\) (TM)
\(n+4=1\Rightarrow n=-3\) (TM)
\(n+4=17\Rightarrow n=13\) (TM)
Vậy \(n\in\left\{-21;-5;-3;13\right\}\) thì \(A\in Z\)
ta có
\(A=\frac{3n-5}{n+4}=3-\frac{17}{n+4}\) là số nguyên khi \(\frac{17}{n+4}\text{ nguyên hay }n+4\text{ là ước của 17 }\)
\(\Rightarrow n+4\in\left\{\pm1,\pm17\right\}\Rightarrow n\in\left\{-21,-5,-3,13\right\}\)
Trả lời:
Ta có : A = \(\frac{3n-5}{n+4}=\frac{3\left(n+4\right)-17}{n+4}=\frac{3\left(n+4\right)}{n+4}-\frac{17}{n+4}=3+\frac{17}{n+4}\)
Để A = \(\frac{3n-5}{n+4}\)là số nguyên thì \(\frac{17}{n+4}\)cũng là số nguyên
=> \(17⋮n+4\)hay \(n+4\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)
Ta có bảng sau:
n+4 | 1 | -1 | 17 | -17 |
n | -3 | -5 | 13 | -21 |
Vậy \(x\in\left\{-3;-5;13;-21\right\}\)thì A = \(\frac{3n-5}{n+4}\)là số nguyên.
\(A=\frac{3n-5}{n+4}=\frac{3n+12-17}{n+4}=\frac{3\left(n+4\right)-17}{n+4}=3-\frac{17}{n+4}\)
Để \(A=3-\frac{17}{n+4}\in Z\Leftrightarrow\frac{17}{n+4}\in Z\)
Hay \(n+4\inƯ\left(17\right)=-17;-1;1;17\)
\(\Rightarrow n=-21;-5;-3;13\)
lớp 5 chưa học âm đâu