Tìm giá trị nhỏ nhất của biểu thức : M = /x-2006/+(x-y+1)^2 + 2008
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk ko viết lại đề đâu nha làm luôn đấy
M=|3-x|+|x-7|+|x+2018|
\(\le\left|3-x+x+2018\right|+\)\(\left|x-7\right|\)
=|2021|+|x-7|
Dấu "=" xảy ra khi (3-x)(x+2018)\(\ge0\)
\(\Leftrightarrow\hept{\begin{cases}3-x\ge0\\x+2018\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le2018\end{cases}\Rightarrow3\le x\le2018}\)
Do |x-7|\(\ge0\) nên GTNN của M=2021 khi và chỉ khi x-7=0 => x=7(t/m \(3\le x\le2018\))
vậy GTNN của M=2021 khi x=7
tk cho mk nha bn
***** Chúc bạn học giỏi*****
Mik cũng làm được kết quả như bạn!! Hihi. Dù sao cũng cảm ơn bạn nhiều nha...
a)|x- 2006| -|2007- x|
Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|x-2006\right|-\left|2007-x\right|\ge\left|x-2006-2007-x\right|=4013\)
Dấu = khi \(\left(x-2006\right)\left(2007-x\right)\ge0\)
\(\Rightarrow2006\le x\le2007\)
\(\Rightarrow\begin{cases}2006\le x\le2007\\\left(x-2006\right)\left(2007-x\right)=0\end{cases}\)\(\Rightarrow\begin{cases}x=2006\\x=2007\end{cases}\)
Vậy MinB=4013 khi x=2006 hoặc x=2007
b)Ta có:\(\begin{cases}y^2\\\left|x-16\right|\end{cases}\ge0\)
\(\Rightarrow y^2+\left|x-16\right|-9\ge0-9=-9\)
\(\Rightarrow C\ge-9\)
Dấu = khi \(\begin{cases}y^2=0\\\left|x-16\right|=0\end{cases}\)\(\Rightarrow\begin{cases}x=16\\y=0\end{cases}\)
Vậy MinC=-9 khi x=16 và y=0
Ta có |x-2006| \(\ge\) 0 với mọi x
(x-y+1)^2 \(\ge\)0 với mọi x;y
=>|x-2006|+(x-y+1)^2+2008 \(\ge\) 2008 với mọi x;y
Dấu "=" sảy ra khi x-2006=0 => x=2006
x-y+1=0 =>2006-y+1=0 => 2006-y=-1 => y=2006+1=2007
Vậy Min M=2008 tại x=2006 và y=2007
thk bạn