Ai giai giup minh bai nay voi
A=1+1/2(1+2)+1/3(1+2+3)+......+1/2011(1+2+3+.....+2011)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 nhân cả 2 vế với 2 rồi trừ vế
Bài 2 ta có |x+10|>_0với mọi x
=>|x+10|+2015>_2015 hay A>_2015
Dấu bằng xảy ra <=>|x+10|=0
=>x+10=0
Bài 3ta có |-x+4|>_0 với mọi x
=>|-x+4|+2011>_2011
dấu bằng xảy ra <=>|-x+4|=0
=>-x+4=0
=>x=4
=>x=-10
Bài 2
Bước1: Chứng minh: x>ln(1+x)>x-x^2/2 (khảo sát hàm lớp 12)
Bước2: Đặt A=1+1/2+1/3+...+1/N.
B=1+1/2^2+1/3^2+...+1/N^2.
C=1+1/1.2+1/2.3+...+1/(N-1).N
D=ln(1+1)+ln(1+1/2)+ln(1+1/3)+...
...+ln(1+1/N).
Bước 3: Nhận xét: 1/k(k+1)=1/k-1/(k+1)
suy ra C=2-1/N <2
Bước 4: Nhận xét ln(k+1)-lnk=ln(1+1/k)
suy ra D=ln(N+1)
Bước 5: Nhận xét B<C<2
Bước 6: Chứng minh A->+oo (Omerta_V đã CM)
Bước 7: Từ Bước1 suy ra:
A>D>A-1/2B>A-1.
Bước 8: Vậy A xấp sỉ D với sai số tuyệt đối bằng 1.
Mà A->+oo. Nên khi N rất lớn thì sai số tương đối có thể coi là 0.
Cụ thể hơn Khi N>2^k thì sai số tương đối < k/2
Vậy khi N lớn hơn 1000000 thì ta có thể coi A=ln(N+1).
vậy đáp án là 5
Ta có: B=1/199+2/198+3/197+...+197/3+198/2+199/1
= (1/199+1)+(2/198+1)+(3/197+1)+...+(197/3+1)+(198/2+1)+200/200
=200/199+200/198+200/197+...+200/3+200/2+200/1+200/200
=200( 1/200+1/199+1/198+1/197+...+1/3+1/2)
=200*A
=> A/B=A/200A=1/200
2^2002^199-2^198-2^197-....-2-1 giải giúp mình với toán lớp 6 đó đề học sinh giỏi nhé
a) [x(x+1].[(x-1)(x+2)]=24
(x2+x)(x2+x+2)=24
Dat x2+x=a , ta dc: a(a+2)=24
=> a2+2a-24=0
=> (a-4)(a+6)=0
=> a=4 hoac a=-6
Thay vao roi tu tim x nha
b)
\(\left(x-2011\right)^{x+1}-\left(x-2011\right)^{x+2011}=0\)
\(\left(x-2011\right)^{x+1}\left[1-\left(x-2011\right)^{2010}\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-2011\right)^{x+1}=0\\1-\left(x-2011\right)^{2010}=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-2011=0\\\left(x-2011\right)^{2010}=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2011\\x-2011=-1;1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2011\\x=2010;2012\end{cases}}\)
Vậy \(x=2010;2011;2012\)
(x - 2011)x +1 - (x - 2011)x + 2011 = 0
ta có : x - 2011 = 0 => x= 2011
\(A=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{2011}\left(1+2+3+...+2011\right)\)
\(=1+\frac{1}{2}\cdot\frac{2.3}{2}+\frac{1}{3}\cdot\frac{3.4}{2}+...+\frac{1}{2011}\cdot\frac{2011.2012}{2}\)
\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+...+\frac{2012}{2}\)
\(=\frac{2+3+4+...+2012}{2}\)
\(=\frac{\frac{2012\cdot2013}{2}-1}{2}=\frac{2025077}{2}\)