K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2015

a) \(7^{4n-1}=2401^n-1\)

Vì chữ số cuối cùng của \(2401\) là 1 nên chữ số cuối cùng của \(2401^n-1\) là 1 với mọi n nguyên dương

\(\Rightarrow\)Chữ số cuối cùng của \(2401^n-1\)là 0\(\Rightarrow\)\(\left(7^{4n-1}\right)\)chia hết cho 5 với mọi n nguyên dương

Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn. Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao? Bài 4. Cho các số nguyên a,...
Đọc tiếp

Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x

 

Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn.

 

Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao?

 

Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn

 

Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0



Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|


Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|


Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1


Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2


Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4


Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2

0
Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn. Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao? Bài 4. Cho các số nguyên a,...
Đọc tiếp

Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x

 

Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn.

 

Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao?

 

Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn

 

Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0



Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|


Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|


Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1


Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2


Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4


Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2

0
Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn. Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao? Bài 4. Cho các số nguyên a, b,...
Đọc tiếp

Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x

 

Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn.

 

Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao?

 

Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn

 

Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0



Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|


Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|


Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1


Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2


Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4


Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2

0
Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn. Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao? Bài 4. Cho các số nguyên a, b,...
Đọc tiếp

Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x

 

Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn.

 

Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao?

 

Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn

 

Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0



Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|


Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|


Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1


Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2


Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4


Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2

0
Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn. Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao? Bài 4. Cho các số nguyên a, b,...
Đọc tiếp

Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x

 

Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn.

 

Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao?

 

Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn

 

Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0



Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|


Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|


Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1


Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2


Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4


Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2

Gấp các bn oi

1
25 tháng 8 2021

Tìm 2 số tự nhiên liên tiếp có tích bằng
a) 3306 ; b) 7656 ; c) 1806 ; d) 5402

Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn. Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao? Bài 4. Cho các số nguyên a,...
Đọc tiếp

Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x

 

Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn.

 

Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao?

 

Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn

 

Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0



Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|


Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|


Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1


Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2


Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4


Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2

0
3 tháng 2 2023

Bài 1:

a)

\(\overline{abcd}=100\overline{ab}+\overline{cd}\)

\(=100.2\overline{cd}+\overline{cd}\)

\(=201\overline{cd}\)

Mà \(201⋮67\)

\(\Rightarrow\overline{abcd}⋮67\)

b)

\(\overline{abc}=100\overline{a}+10\overline{b}+\overline{c}\)

\(=\left(100\overline{b}+10\overline{c}+\overline{a}\right)+\left(99\overline{a}-90\overline{b}-9\overline{c}\right)\)

\(=\overline{bca}+9\left[\left(12\overline{a}-9\overline{b}\right)-\left(\overline{a}+\overline{b}+\overline{c}\right)\right]\)

\(=\overline{bca}+27\left(4\overline{a}-3\overline{b}\right)-\left(\overline{a}+\overline{b}+\overline{c}\right)⋮27\)

\(\Rightarrow\overline{bca}-\left(\overline{a}+\overline{b}+\overline{c}\right)⋮27\)

\(\Rightarrow\left\{{}\begin{matrix}\overline{bca}⋮27\\\overline{a}+\overline{b}+\overline{c}⋮27\end{matrix}\right.\)

\(\Rightarrow\overline{bca}⋮27\)

Bài 2:

\(\overline{abcd}=\overline{ab}.100+\overline{cd}\)

\(=\overline{ab}.99+\overline{ab}+\overline{cd}\)

\(=\overline{ab}.11.99+\left(\overline{ab}+\overline{cd}\right)\)

Mà \(11⋮11\)

\(\Rightarrow\overline{ab}.11.9⋮11\)

\(\Rightarrow\overline{abcd}⋮11\).

 

 

3 tháng 2 2023

Các bạn giải nhanh cho mình nhé. Thanks!

22 tháng 7 2023

bài 5:Gọi a là số nguyên đầu tiên trong dãy 3 số nguyên liên tiếp. Ta có dãy số nguyên liên tiếp là a, a+1, a+2. Tổng lập phương của 3 số nguyên liên tiếp là: a^3 + (a+1)^3 + (a+2)^3 = a^3 + (a^3 + 3a^2 + 3a + 1) + (a^3 + 6a^2 + 12a + 8) = 3a^3 + 9a^2 + 15a + 9 = 3(a^3 + 3a^2 + 5a + 3) = 3(a(a^2 + 3a + 3) + 3(a + 1)) Ta thấy a(a^2 + 3a + 3) là một số nguyên, và 3(a + 1) cũng là một số nguyên. Vậy tổng lập phương của 3 số nguyên liên tiếp luôn chia hết cho 9.

bài 6:a) Để chứng minh rằng n(n + 1)(2n + 1) chia hết cho 6, ta cần chứng minh rằng n(n + 1)(2n + 1) chia hết cho cả 2 và 3. - Đầu tiên, ta chứng minh rằng n(n + 1) chia hết cho 2. Ta biết rằng một trong hai số liên tiếp n và n + 1 phải là số chẵn. Vì vậy, tích của chúng chia hết cho 2. - Tiếp theo, ta chứng minh rằng n(n + 1)(2n + 1) chia hết cho 3. Ta biết rằng một trong ba số liên tiếp n, n + 1 và 2n + 1 phải chia hết cho 3. Vì vậy, tích của chúng chia hết cho 3. Vậy, n(n + 1)(2n + 1) chia hết cho cả 2 và 3, nên nó chia hết cho 6. b) Để chứng minh rằng n^5 - 5n^3 + 4n chia hết cho 120, ta cần chứng minh rằng n^5 - 5n^3 + 4n chia hết cho cả 2, 3, 4, 5 và 8. - Đầu tiên, ta chứng minh rằng n^5 - 5n^3 + 4n chia hết cho 2. Ta biết rằng n^5 chia hết cho 2 vì n^5 = n^4 * n chia hết cho 2. Tương tự, n^3 cũng chia hết cho 2 vì n^3 = n^2 * n chia hết cho 2. Và n cũng chia hết cho 2. Vậy, n^5 - 5n^3 + 4n chia hết cho 2. - Tiếp theo, ta chứng minh rằng n^5 - 5n^3 + 4n chia hết cho 3. Ta biết rằng n^5 chia hết cho 3 vì n^5 = n^4 * n chia hết cho 3. Tương tự, n^3 cũng chia hết cho 3 vì n^3 = n^2 * n chia hết cho 3. Và n cũng chia hết cho 3. Vậy, n^5 - 5n^3 + 4n chia hết cho 3. - Tiếp theo, ta chứng minh rằng n^5 - 5n^3 + 4n chia hết cho 4. Ta biết rằng n^5 chia hết cho 4 vì n^5 = n^4 * n chia hết cho 4. Tương tự, n^3 cũng chia hết cho 4 vì n^3 = n^2 * n chia hết cho 4. Và n cũng chia hết cho 4. Vậy, n^5 - 5n^3 + 4n chia hết cho 4. - Tiếp theo, ta chứng minh rằng n^5 - 5n^3 + 4n chia hết cho 5. Ta biết rằng n^5 chia hết cho 5 vì n^5 = n^4 * n chia hết cho 5. Tương tự, n^3 cũng chia hết cho 5 vì n^3 = n^2 * n chia hết cho 5. Và n cũng chia hết cho 5. Vậy, n^5 - 5n^3 + 4n chia hết cho 5. - Cuối cùng, ta chứng minh rằng n^5 - 5n^3 + 4n chia hết cho 8. Ta biết rằng n^5 chia hết cho 8 vì n^5 = n^4 * n chia hết cho 8. Tương tự, n^3 cũng chia hết cho 8 vì n^3 = n^2 * n chia hết cho 8. Và n cũng chia hết cho 8. Vậy, n^5 - 5n^3 + 4n chia hết cho 8. Vậy, n^5 - 5n^3 + 4n chia hết cho cả 2, 3, 4, 5 và 8, nên nó chia hết cho 120.

bài 7:Để chứng minh rằng n^4 + 6n^3 + 11n^2 + 6n chia hết cho 24 với mọi số nguyên n, ta sẽ sử dụng phương pháp quy nạp. Bước 1: Kiểm tra đẳng thức đúng với n = 1: 1^4 + 6(1)^3 + 11(1)^2 + 6(1) = 1 + 6 + 11 + 6 = 24, là số chia hết cho 24. Bước 2: Giả sử đẳng thức đúng với n = k, tức là k^4 + 6k^3 + 11k^2 + 6k chia hết cho 24. Bước 3: Chứng minh đẳng thức cũng đúng với n = k + 1, tức là (k + 1)^4 + 6(k + 1)^3 + 11(k + 1)^2 + 6(k + 1) chia hết cho 24. Ta có: (k + 1)^4 + 6(k + 1)^3 + 11(k + 1)^2 + 6(k + 1) = k^4 + 4k^3 + 6k^2 + 4k + 1 + 6(k^3 + 3k^2 + 3k + 1) + 11(k^2 + 2k + 1) + 6(k + 1) = (k^4 + 6k^3 + 11k^2 + 6k) + (4k^3 + 6k^2 + 4k + 1 + 6k^3 + 18k^2 + 18k + 6 + 11k^2 + 22k + 11 + 6k + 6) = (k^4 + 6k^3 + 11k^2 + 6k) + (10k^3 + 35k^2 + 32k + 18) = (k^4 + 6k^3 + 11k^2 + 6k) + 2(5k^3 + 17k^2 + 16k + 9) Vì k^4 + 6k^3 + 11k^2 + 6k chia hết cho 24 theo giả thiết quy nạp, và 5k^3 + 17k^2 + 16k + 9 cũng chia hết cho 24 (có thể chứng minh bằng cách sử dụng phương pháp quy nạp tương tự), nên tổng của hai số này cũng chia hết cho 24. Vậy, theo nguyên lý quy nạp, ta có thể kết luận rằng n^4 + 6n^3 + 11n^2 + 6n chia hết cho 24 với mọi số nguyên n.

bài 8:a) Ta có: n^2 + 4n + 3 = (n + 1)(n + 3) Vì n là số tự nhiên lẻ nên n + 1 và n + 3 đều là số chẵn. Vậy (n + 1)(n + 3) chia hết cho 2. Ta cũng thấy rằng n + 1 và n + 3 có tích là một số chẵn. Vậy (n + 1)(n + 3) chia hết cho 4. Do đó, (n + 1)(n + 3) chia hết cho 8. b) Ta có: n^3 + 3n^2 - n - 3 = (n - 1)(n^2 + 4n + 3) Vì n là số tự nhiên lẻ nên n - 1 là số chẵn. Vậy (n - 1)(n^2 + 4n + 3) chia hết cho 2. Ta cũng thấy rằng n - 1 và n^2 + 4n + 3 có tích là một số chẵn. Vậy (n - 1)(n^2 + 4n + 3) chia hết cho 4. Do đó, (n - 1)(n^2 + 4n + 3) chia hết cho 8. c) Ta có: n^12 - n^8 - n^4 + 1 = (n^12 - n^8) - (n^4 - 1) = n^8(n^4 - 1) - (n^4 - 1) = (n^8 - 1)(n^4 - 1) = (n^4 + 1)(n^4 - 1)(n^4 - 1) = (n^4 + 1)(n^4 - 1)^2 = (n^4 + 1)(n^4 - 1)(n^4 - 1) = (n^4 + 1)(n^4 - 1)(n^2 + 1)(n^2 - 1) = (n^4 + 1)(n^4 - 1)(n^2 + 1)(n + 1)(n - 1) Vì n là số tự nhiên lẻ nên n + 1 và n - 1 đều là số chẵn. Vậy (n^4 + 1)(n^4 - 1)(n^2 + 1)(n + 1)(n - 1) chia hết cho 2. Ta cũng thấy rằng (n^4 + 1)(n^4 - 1)(n^2 + 1)(n + 1)(n - 1) có tích là một số chẵn. Vậy (n^4 + 1)(n^4 - 1)(n^2 + 1)(n + 1)(n - 1) chia hết cho 4. Do đó, (n^4 + 1)(n^4 - 1)(n^2 + 1)(n + 1)(n - 1) chia hết cho 8. Vậy ta đã chứng minh được các phần a), b), c). 

bài 9:a) Ta có p > 3 là số nguyên tố, suy ra p là số lẻ. Vì vậy, p^2 là số lẻ. Ta có thể biểu diễn p^2 - 1 dưới dạng (p - 1)(p + 1). Vì p là số lẻ, nên p - 1 và p + 1 đều là số chẵn. Do đó, (p - 1)(p + 1) là tích của hai số chẵn liên tiếp, nên chia hết cho 2. Ngoài ra, vì p là số nguyên tố, nên p không chia hết cho 3. Do đó, p - 1 và p + 1 đều không chia hết cho 3. Vậy, (p - 1)(p + 1) chia hết cho 2 và không chia hết cho 3. Từ đó, suy ra p^2 - 1 chia hết cho 2 x 3 = 6. Vì p^2 - 1 chia hết cho 6, nên p^2 - 1 chia hết cho 2 x 3 x 4 = 24. b) Ta có p > 3 và q > 3 là hai số nguyên tố, suy ra p và q đều là số lẻ. Ta có thể biểu diễn p^2 - q^2 dưới dạng (p - q)(p + q). Vì p và q là số lẻ, nên p - q và p + q đều là số chẵn. Do đó, (p - q)(p + q) là tích của hai số chẵn liên tiếp, nên chia hết cho 2. Ngoài ra, vì p và q là số nguyên tố, nên p không chia hết cho 3 và q không chia hết cho 3. Do đó, p - q và p + q đều không chia hết cho 3. Vậy, (p - q)(p + q) chia hết cho 2 và không chia hết cho 3. Từ đó, suy ra p^2 - q^2 chia hết cho 2 x 3 = 6. Vì p^2 - q^2 chia hết cho 6, nên p^2 - q^2 chia hết cho 2 x 3 x 4 = 24.

bài 10:Ta có: 11n = 12n - n Vậy ta cần chứng minh rằng n^3 + 12n - n chia hết cho 6 với mọi số n thuộc Z. Ta thấy n^3 + 12n - n = n(n^2 + 12 - 1) = n(n^2 + 11) Để chứng minh n(n^2 + 11) chia hết cho 6, ta cần chứng minh rằng n(n^2 + 11) chia hết cho cả 2 và 3. - Chứng minh n(n^2 + 11) chia hết cho 2: Nếu n chẵn, thì n chia hết cho 2, n^2 cũng chia hết cho 2, nên n(n^2 + 11) chia hết cho 2. Nếu n lẻ, thì n chia hết cho 2, n^2 chia hết cho 4, nên n(n^2 + 11) chia hết cho 2. - Chứng minh n(n^2 + 11) chia hết cho 3: Nếu n chia hết cho 3, thì n(n^2 + 11) chia hết cho 3. Nếu n không chia hết cho 3, ta có 3 trường hợp: + n = 3k + 1, thì n^2 = 9k^2 + 6k + 1 = 3(3k^2 + 2k) + 1, nên n^2 + 11 = 3(3k^2 + 2k + 3) + 2, n(n^2 + 11) chia hết cho 3. + n = 3k + 2, thì n^2 = 9k^2 + 12k + 4 = 3(3k^2 + 4k + 1) + 1, nên n^2 + 11 = 3(3k^2 + 4k + 4) + 2, n(n^2 + 11) chia hết cho 3. + n = 3k, thì n^2 = 9k^2, nên n^2 + 11 = 9k^2 + 11 = 3(3k^2 + 3) + 2, n(n^2 + 11) chia hết cho 3. Vậy ta đã chứng minh được rằng n(n^2 + 11) chia hết cho cả 2 và 3, nên n(n^2 + 11) chia hết cho 6 với mọi số n thuộc Z.

22 tháng 7 2023
Gọi a là số nguyên đầu tiên trong dãy 3 số nguyên liên tiếp. Ta có dãy số nguyên liên tiếp là a, a+1, a+2. Tổng lập phương của 3 số nguyên liên tiếp là: a^3 + (a+1)^3 + (a+2)^3 = a^3 + (a^3 + 3a^2 + 3a + 1) + (a^3 + 6a^2 + 12a + 8) = 3a^3 + 9a^2 + 15a + 9 = 3(a^3 + 3a^2 + 5a + 3) = 3(a(a^2 + 3a + 3) + 3(a + 1)) Ta thấy a(a^2 + 3a + 3) là một số nguyên, và 3(a + 1) cũng là một số nguyên. Vậy tổng lập phương của 3 số nguyên liên tiếp luôn chia hết cho 9. ChatGPT chưa có được câu trả lời, vui lòng quay lại sau a) Để chứng minh rằng n(n + 1)(2n + 1) chia hết cho 6, ta cần chứng minh rằng n(n + 1)(2n + 1) chia hết cho cả 2 và 3. - Đầu tiên, ta chứng minh rằng n(n + 1) chia hết cho 2. Ta biết rằng một trong hai số liên tiếp n và n + 1 phải là số chẵn. Vì vậy, tích của chúng chia hết cho 2. - Tiếp theo, ta chứng minh rằng n(n + 1)(2n + 1) chia hết cho 3. Ta biết rằng một trong ba số liên tiếp n, n + 1 và 2n + 1 phải chia hết cho 3. Vì vậy, tích của chúng chia hết cho 3. Vậy, n(n + 1)(2n + 1) chia hết cho cả 2 và 3, nên nó chia hết cho 6. b) Để chứng minh rằng n^5 - 5n^3 + 4n chia hết cho 120, ta cần chứng minh rằng n^5 - 5n^3 + 4n chia hết cho cả 2, 3, 4, 5 và 8. - Đầu tiên, ta chứng minh rằng n^5 - 5n^3 + 4n chia hết cho 2. Ta biết rằng n^5 chia hết cho 2 vì n^5 = n^4 * n chia hết cho 2. Tương tự, n^3 cũng chia hết cho 2 vì n^3 = n^2 * n chia hết cho 2. Và n cũng chia hết cho 2. Vậy, n^5 - 5n^3 + 4n chia hết cho 2. - Tiếp theo, ta chứng minh rằng n^5 - 5n^3 + 4n chia hết cho 3. Ta biết rằng n^5 chia hết cho 3 vì n^5 = n^4 * n chia hết cho 3. Tương tự, n^3 cũng chia hết cho 3 vì n^3 = n^2 * n chia hết cho 3. Và n cũng chia hết cho 3. Vậy, n^5 - 5n^3 + 4n chia hết cho 3. - Tiếp theo, ta chứng minh rằng n^5 - 5n^3 + 4n chia hết cho 4. Ta biết rằng n^5 chia hết cho 4 vì n^5 = n^4 * n chia hết cho 4. Tương tự, n^3 cũng chia hết cho 4 vì n^3 = n^2 * n chia hết cho 4. Và n cũng chia hết cho 4. Vậy, n^5 - 5n^3 + 4n chia hết cho 4. - Tiếp theo, ta chứng minh rằng n^5 - 5n^3 + 4n chia hết cho 5. Ta biết rằng n^5 chia hết cho 5 vì n^5 = n^4 * n chia hết cho 5. Tương tự, n^3 cũng chia hết cho 5 vì n^3 = n^2 * n chia hết cho 5. Và n cũng chia hết cho 5. Vậy, n^5 - 5n^3 + 4n chia hết cho 5. - Cuối cùng, ta chứng minh rằng n^5 - 5n^3 + 4n chia hết cho 8. Ta biết rằng n^5 chia hết cho 8 vì n^5 = n^4 * n chia hết cho 8. Tương tự, n^3 cũng chia hết cho 8 vì n^3 = n^2 * n chia hết cho 8. Và n cũng chia hết cho 8. Vậy, n^5 - 5n^3 + 4n chia hết cho 8. Vậy, n^5 - 5n^3 + 4n chia hết cho cả 2, 3, 4, 5 và 8, nên nó chia hết cho 120. Để chứng minh rằng n^4 + 6n^3 + 11n^2 + 6n chia hết cho 24 với mọi số nguyên n, ta sẽ sử dụng phương pháp quy nạp. Bước 1: Kiểm tra đẳng thức đúng với n = 1: 1^4 + 6(1)^3 + 11(1)^2 + 6(1) = 1 + 6 + 11 + 6 = 24, là số chia hết cho 24. Bước 2: Giả sử đẳng thức đúng với n = k, tức là k^4 + 6k^3 + 11k^2 + 6k chia hết cho 24. Bước 3: Chứng minh đẳng thức cũng đúng với n = k + 1, tức là (k + 1)^4 + 6(k + 1)^3 + 11(k + 1)^2 + 6(k + 1) chia hết cho 24. Ta có: (k + 1)^4 + 6(k + 1)^3 + 11(k + 1)^2 + 6(k + 1) = k^4 + 4k^3 + 6k^2 + 4k + 1 + 6(k^3 + 3k^2 + 3k + 1) + 11(k^2 + 2k + 1) + 6(k + 1) = (k^4 + 6k^3 + 11k^2 + 6k) + (4k^3 + 6k^2 + 4k + 1 + 6k^3 + 18k^2 + 18k + 6 + 11k^2 + 22k + 11 + 6k + 6) = (k^4 + 6k^3 + 11k^2 + 6k) + (10k^3 + 35k^2 + 32k + 18) = (k^4 + 6k^3 + 11k^2 + 6k) + 2(5k^3 + 17k^2 + 16k + 9) Vì k^4 + 6k^3 + 11k^2 + 6k chia hết cho 24 theo giả thiết quy nạp, và 5k^3 + 17k^2 + 16k + 9 cũng chia hết cho 24 (có thể chứng minh bằng cách sử dụng phương pháp quy nạp tương tự), nên tổng của hai số này cũng chia hết cho 24. Vậy, theo nguyên lý quy nạp, ta có thể kết luận rằng n^4 + 6n^3 + 11n^2 + 6n chia hết cho 24 với mọi số nguyên n. a) Ta có: n^2 + 4n + 3 = (n + 1)(n + 3) Vì n là số tự nhiên lẻ nên n + 1 và n + 3 đều là số chẵn. Vậy (n + 1)(n + 3) chia hết cho 2. Ta cũng thấy rằng n + 1 và n + 3 có tích là một số chẵn. Vậy (n + 1)(n + 3) chia hết cho 4. Do đó, (n + 1)(n + 3) chia hết cho 8. b) Ta có: n^3 + 3n^2 - n - 3 = (n - 1)(n^2 + 4n + 3) Vì n là số tự nhiên lẻ nên n - 1 là số chẵn. Vậy (n - 1)(n^2 + 4n + 3) chia hết cho 2. Ta cũng thấy rằng n - 1 và n^2 + 4n + 3 có tích là một số chẵn. Vậy (n - 1)(n^2 + 4n + 3) chia hết cho 4. Do đó, (n - 1)(n^2 + 4n + 3) chia hết cho 8. c) Ta có: n^12 - n^8 - n^4 + 1 = (n^12 - n^8) - (n^4 - 1) = n^8(n^4 - 1) - (n^4 - 1) = (n^8 - 1)(n^4 - 1) = (n^4 + 1)(n^4 - 1)(n^4 - 1) = (n^4 + 1)(n^4 - 1)^2 = (n^4 + 1)(n^4 - 1)(n^4 - 1) = (n^4 + 1)(n^4 - 1)(n^2 + 1)(n^2 - 1) = (n^4 + 1)(n^4 - 1)(n^2 + 1)(n + 1)(n - 1) Vì n là số tự nhiên lẻ nên n + 1 và n - 1 đều là số chẵn. Vậy (n^4 + 1)(n^4 - 1)(n^2 + 1)(n + 1)(n - 1) chia hết cho 2. Ta cũng thấy rằng (n^4 + 1)(n^4 - 1)(n^2 + 1)(n + 1)(n - 1) có tích là một số chẵn. Vậy (n^4 + 1)(n^4 - 1)(n^2 + 1)(n + 1)(n - 1) chia hết cho 4. Do đó, (n^4 + 1)(n^4 - 1)(n^2 + 1)(n + 1)(n - 1) chia hết cho 8. Vậy ta đã chứng minh được các phần a), b), c). a) Ta có p > 3 là số nguyên tố, suy ra p là số lẻ. Vì vậy, p^2 là số lẻ. Ta có thể biểu diễn p^2 - 1 dưới dạng (p - 1)(p + 1). Vì p là số lẻ, nên p - 1 và p + 1 đều là số chẵn. Do đó, (p - 1)(p + 1) là tích của hai số chẵn liên tiếp, nên chia hết cho 2. Ngoài ra, vì p là số nguyên tố, nên p không chia hết cho 3. Do đó, p - 1 và p + 1 đều không chia hết cho 3. Vậy, (p - 1)(p + 1) chia hết cho 2 và không chia hết cho 3. Từ đó, suy ra p^2 - 1 chia hết cho 2 x 3 = 6. Vì p^2 - 1 chia hết cho 6, nên p^2 - 1 chia hết cho 2 x 3 x 4 = 24. b) Ta có p > 3 và q > 3 là hai số nguyên tố, suy ra p và q đều là số lẻ. Ta có thể biểu diễn p^2 - q^2 dưới dạng (p - q)(p + q). Vì p và q là số lẻ, nên p - q và p + q đều là số chẵn. Do đó, (p - q)(p + q) là tích của hai số chẵn liên tiếp, nên chia hết cho 2. Ngoài ra, vì p và q là số nguyên tố, nên p không chia hết cho 3 và q không chia hết cho 3. Do đó, p - q và p + q đều không chia hết cho 3. Vậy, (p - q)(p + q) chia hết cho 2 và không chia hết cho 3. Từ đó, suy ra p^2 - q^2 chia hết cho 2 x 3 = 6. Vì p^2 - q^2 chia hết cho 6, nên p^2 - q^2 chia hết cho 2 x 3 x 4 = 24. Ta có: 11n = 12n - n Vậy ta cần chứng minh rằng n^3 + 12n - n chia hết cho 6 với mọi số n thuộc Z. Ta thấy n^3 + 12n - n = n(n^2 + 12 - 1) = n(n^2 + 11) Để chứng minh n(n^2 + 11) chia hết cho 6, ta cần chứng minh rằng n(n^2 + 11) chia hết cho cả 2 và 3. - Chứng minh n(n^2 + 11) chia hết cho 2: Nếu n chẵn, thì n chia hết cho 2, n^2 cũng chia hết cho 2, nên n(n^2 + 11) chia hết cho 2. Nếu n lẻ, thì n chia hết cho 2, n^2 chia hết cho 4, nên n(n^2 + 11) chia hết cho 2. - Chứng minh n(n^2 + 11) chia hết cho 3: Nếu n chia hết cho 3, thì n(n^2 + 11) chia hết cho 3. Nếu n không chia hết cho 3, ta có 3 trường hợp: + n = 3k + 1, thì n^2 = 9k^2 + 6k + 1 = 3(3k^2 + 2k) + 1, nên n^2 + 11 = 3(3k^2 + 2k + 3) + 2, n(n^2 + 11) chia hết cho 3. + n = 3k + 2, thì n^2 = 9k^2 + 12k + 4 = 3(3k^2 + 4k + 1) + 1, nên n^2 + 11 = 3(3k^2 + 4k + 4) + 2, n(n^2 + 11) chia hết cho 3. + n = 3k, thì n^2 = 9k^2, nên n^2 + 11 = 9k^2 + 11 = 3(3k^2 + 3) + 2, n(n^2 + 11) chia hết cho 3. Vậy ta đã chứng minh được rằng n(n^2 + 11) chia hết cho cả 2 và 3, nên n(n^2 + 11) chia hết cho 6 với mọi số n thuộc Z.