K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2022

57,17 x 100 = 5717 nha

chỉ cần viết thế là đủ r

7 tháng 10 2021

Áp dụng t/c dtsbn:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x^2}{4}=\dfrac{2y^2}{18}=\dfrac{z^2}{25}=\dfrac{x^2-2y^2+z^2}{4-18+25}=\dfrac{44}{11}=4\\ \Leftrightarrow\left\{{}\begin{matrix}x=8\\y=12\\z=20\end{matrix}\right.\)

23 tháng 12 2021

g: \(=\dfrac{x^2+2x-x^2-4x-2x+4}{x\left(x-2\right)\left(x+2\right)}=\dfrac{-4x+4}{x\left(x-2\right)\left(x+2\right)}\)

h: \(=\dfrac{2x^2+1-x^2+1-x^2+x-1}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{1}{x^2-x+1}\)

23 tháng 12 2021

\(e,=\dfrac{1}{x-1}-\dfrac{2x}{\left(x^2+1\right)\left(x-1\right)}=\dfrac{x^2-2x+1}{\left(x^2+1\right)\left(x-1\right)}=\dfrac{\left(x-1\right)^2}{\left(x^2+1\right)\left(x-1\right)}=\dfrac{x-1}{x^2+1}\\ f,=\dfrac{3x-1}{2\left(3x+1\right)}+\dfrac{3x+1}{2\left(3x-1\right)}-\dfrac{6x}{\left(3x-1\right)\left(3x+1\right)}\\ =\dfrac{9x^2-6x+1+9x^2+6x+1-12x}{2\left(3x-1\right)\left(3x+1\right)}=\dfrac{2\left(3x-1\right)^2}{2\left(3x-1\right)\left(3x+1\right)}=\dfrac{3x-1}{3x+1}\)

\(g,=\dfrac{x}{x\left(x-2\right)}-\dfrac{x^2+4x}{x\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x\left(x+2\right)}\\ =\dfrac{x^2+2x-x^2-4x-2x+4}{x\left(x-2\right)\left(x+2\right)}=\dfrac{-4x+4}{x\left(x-2\right)\left(x+2\right)}\\ h,=\dfrac{2x^2+1-x^2+1-x^2+x-1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{1}{x^2-x+1}\)

27 tháng 8 2023

ĐK: \(x>0\)

PT trở thành:

\(x+2=3\sqrt{x}\\ \Leftrightarrow x-3\sqrt{x}+2=0\\ \Leftrightarrow x-2\sqrt{x}-\sqrt{x}+2=0\\ \Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)-\left(\sqrt{x}-2\right)=0\\ \Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-2=0\\\sqrt{x}-1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=1\left(tm\right)\end{matrix}\right.\)

Vậy PT có nghiệm `x=4` hoặc `x=1`

27 tháng 8 2023

\(\dfrac{x+2}{\sqrt{x}}=3\) (ĐKXĐ: x > 0)

\(\Leftrightarrow x+2=3\sqrt{x}\)

\(\Leftrightarrow x-3\sqrt{x} +2=0\)

\(\Leftrightarrow x-\sqrt{x}-2\sqrt{x}+2=0\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-2=0\\\sqrt{x}-1=0\end{matrix}\right.\)            \(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=1\end{matrix}\right.\) (tm)

#Ayumu

29 tháng 9 2023

`2)`

`@` Xét `3x+6 >= 0<=>x >= -2`

         `=>A=[-2;+oo)`

`@` Xét `|x-2| < 3`

`<=>-3 < x-2 < 3`

`<=>-1 < x < 5=>B=(-1;5)`

Có: `A nn B=(-1;5)`

      `A uu B=[-2;+oo)`

      `R \\ B=(-oo;-1]uu[5;+oo)`

_______

`3)`

`@` Xét `x+3 >= 2x+7<=>x <= -4=>A=(-oo;-4]`

`@` Xét `4x+5 > 0<=>x > -5/4=>B=(-5/4;+oo)`

`@` Xét `|x+4| < 2<=>-2 < x+4 < 2<=>-6 < x < -2 =>C=(-6;-2)`

Có: `A nn B nn C=\emptyset`

      `A \\ B nn C=(-6;-4]`

       `C \\ A nn B=\emptyset`.

27 tháng 9 2023

Bài 4: 

Theo định lý sin ta có:
\(\dfrac{AC}{sinB}=\dfrac{BC}{sinA}\)

\(\Rightarrow BC=a=\dfrac{b\cdot sinA}{sinB}=\dfrac{2\cdot sin60^o}{sin45^o}=\sqrt{6}\)

\(\Rightarrow\widehat{C}=180^o-60^o-45^o=75^o\)

\(\dfrac{AC}{sinB}=\dfrac{AB}{sinC}\)

\(\Rightarrow AB=c=\dfrac{b\cdot sinC}{sinB}=\dfrac{2\cdot sin75^o}{sin45^o}=1+\sqrt{3}\) 

Diện tích tam giác ABC là:

\(S_{ABC}=\dfrac{1}{2}\cdot AC\cdot AB\cdot sinA=\dfrac{1}{2}\cdot2\cdot\left(1+\sqrt{3}\right)\cdot sin75^o=\dfrac{\sqrt{6}+2\sqrt{2}}{2}\) (đvdt) 

Bán kình hình tròn tam giác ABC khi đó là:

\(S_{ABC}=\dfrac{abc}{4R}\)

\(\Rightarrow R=\dfrac{abc}{4S_{ABC}}=\dfrac{2\cdot\left(1+\sqrt{3}\right)\cdot\sqrt{6}}{4\cdot\left(\dfrac{\sqrt{6}+2\sqrt{2}}{2}\right)}=3-\sqrt{3}\) 

27 tháng 9 2023

Bài 3:

a) Xét tam giác ABC theo định lý côsin ta có:
\(cosC=\dfrac{a^2+b^2-c^2}{2ab}=\dfrac{8^2+10^2-13^2}{2\cdot8\cdot10}=-0,03125\)

\(\Rightarrow\widehat{C}=cos^{-1}-0,03125\approx91^o>90^o\)

Nên tam giác ABC có góc C là góc tù 

c) Theo hệ thức Heron ta có diện tích tam giác ABC là: 

\(S_{ABC}=\sqrt{p\cdot\left(p-a\right)\cdot\left(p-b\right)\cdot\left(p-c\right)}\)

\(\Rightarrow S_{ABC}=\sqrt{\dfrac{8+10+13}{2}\cdot\left(\dfrac{8+10+13}{2}-8\right)\cdot\left(\dfrac{8+10+13}{2}-10\right)\cdot\left(\dfrac{8+10+13}{2}-13\right)}\)

\(\Rightarrow S_{ABC}\approx40\) (đvdt) 

b) Bán kính đường tròn ngoại tiếp tam giác ABC là:
\(S_{ABC}=\dfrac{abc}{4R}\)

\(\Rightarrow R=\dfrac{abc}{4S_{ABC}}=\dfrac{8\cdot10\cdot13}{4\cdot40}=6,5\)

13 tháng 9 2021

1, Hàm số xác định 

⇔ cos2x ≠ 4

Mà 0 ≤ cos2x ≤ 1 nên điều trên đúng ∀ x ∈ R

Tập xác định : D = R

2, Hàm số xác định ⇔ \(\left\{{}\begin{matrix}cos3x\ne0\\cosx\ne0\end{matrix}\right.\)

⇔ cos3x ≠ 0

⇔ x ≠ \(\pm\dfrac{\pi}{6}+k.\dfrac{\pi}{3}\) , k ∈ Z

Tập xác định : D = R \ { \(\pm\dfrac{\pi}{6}+k.\dfrac{\pi}{3}\) , k ∈ Z}

3, D = [- 2 ; 2]

4, D = [- 1 ; +\(\infty\)) \ {0 ; 4}

11, sin2x - cos2x ≠ 0 

⇔ cos2x ≠ 0