K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2017

\(\hept{\begin{cases}\frac{25x^2-y^2}{20x-4y-3\left(5x+y\right)}=3\\\frac{25x^2-y^2}{2\left(5x-y\right)+10x+2y}=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{\left(5x-y\right)\left(5x+y\right)}{4\left(5x-y\right)-3\left(5x+y\right)}=3\\\frac{\left(5x-y\right)\left(5x+y\right)}{2\left(5x-y\right)+2\left(5x+y\right)}=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{4\left(5x-y\right)-3\left(5x+y\right)}{\left(5x-y\right)\left(5x+y\right)}=\frac{1}{3}\\\frac{2\left(5x-y\right)+2\left(5x+y\right)}{\left(5x-y\right)\left(5x+y\right)}=1\end{cases}}\)

 \(\Leftrightarrow\hept{\begin{cases}\frac{4}{5x+y}-\frac{3}{5x-y}=\frac{1}{3}\\\frac{2}{5x+y}+\frac{2}{5x-y}=1\end{cases}}\) 

Đặt: \(\hept{\begin{cases}\frac{1}{5x+y}=a\\\frac{1}{5x-y}=b\end{cases}}\)thì hệ thành

\(\hept{\begin{cases}4a-3b=\frac{1}{3}\\2a+2b=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=\frac{11}{42}\\b=\frac{5}{21}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{5x+y}=\frac{11}{42}\\\frac{1}{5x-y}=\frac{5}{21}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{441}{550}\\y=-\frac{21}{110}\end{cases}}\)

PS: Bí thì bỏ chứ đăng lên làm gì :3

14 tháng 2 2017

Em không thích bỏ đó được không? :3

16 tháng 1 2018

Những bài còn lại chỉ cần phân tích ra rồi rút gọn là được nha. Bạn tự làm nha!

16 tháng 1 2018

Đặt \(\hept{\begin{cases}x+y=a\\x-y=b\end{cases}}\)\(\Rightarrow\)ta có hệ \(\hept{\begin{cases}2a+3b=4\\a+2b=5\end{cases}}\Rightarrow\hept{\begin{cases}a=-7\\b=6\end{cases}}\)Từ đó ta có \(\hept{\begin{cases}x+y=-7\\x-y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{13}{2}\end{cases}}\)PS: Cái đề chỗ 3(x+y) phải thành 3(x-y) chứ

14 tháng 3 2020

Phương trình thứ hai tương đương: \(5x^4-10x^3y+x^2-2xy=0\Leftrightarrow5x^3\left(x-2y\right)+x\left(x-2y\right)=0\Leftrightarrow x\left(x-2y\right)\left(5x^2+1\right)=0\)

Vì \(5x^2+1>0\)nên \(x\left(x-2y\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=2y\end{cases}}\)

Đến đây bạn tự giải tiếp

21 tháng 2 2019

Câu 1: ĐK: x khác -1/2, y khác -2

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:

\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)

=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)

Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>

21 tháng 2 2019

\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)

\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)

             \(\Leftrightarrow a^2+1=2a\)

             \(\Leftrightarrow\left(a-1\right)^2=0\)

            \(\Leftrightarrow a=1\)

           \(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)

19 tháng 12 2019

1/ĐKXĐ: \(x^2+4y+8\ge0\)

PT (1) \(\Leftrightarrow\left(x-2\right)\left(x-y+3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=2\\x=y-3\end{cases}}\)

+) Với x = 2, thay vào PT (2): \(4\sqrt{y^2+4}=y\sqrt{4y+12}\) (\(\text{ĐKXĐ:}y\ge-3\))

\(\Leftrightarrow\hept{\begin{cases}y\ge0\\16\left(y^2+4\right)=y^2\left(4y+12\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}y\ge0\\4\left(y^3-y^2-16\right)=0\end{cases}}\)

\(\Rightarrow y=\frac{1}{3}\left(1+\sqrt[3]{217-12\sqrt{327}}+\sqrt[3]{217+12\sqrt{327}}\right)\)(nghiệm khổng lồ quá chả biết tính kiểu gì nên em nêu đáp án thôi:v)

Vậy...

+) Với x = y - 3, thay vào PT (2):

\(\left(y-1\right)\sqrt{y^2+4}=y\sqrt{y^2-2y+17}\)

\(\Rightarrow\left(y-1\right)^2\left(y^2+4\right)=y^2\left(y^2-2y+17\right)\)(Biến đổi hệ quả nên ta dùng dấu suy ra)

\(\Leftrightarrow4\left(1-3y\right)\left(y+1\right)=0\Leftrightarrow\orbr{\begin{cases}y=\frac{1}{3}\\y=-1\end{cases}}\)

Thử lại ta thấy chỉ có y = - 1 \(\Rightarrow x=y-3=-4\)