Tìm x:
7-(-x3)=15
Giúp mình với!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x - 140) : 7 = 33 - 23 . 3
(x - 140) : 7 = 27 - 8 . 3 = 27 - 24 = 3
x - 140 = 3 x 7 = 21
x = 21 + 140 = 161
b) x3 . x2 = 28 : 23
x5 = 25
=> x = 2
c) (x + 2) . ( x - 4) = 0
x = -2 hoặc 4
d) 3x-3 - 32 = 2 . 32 =
3x-3 - 9 = 2 . 9 = 18
3x-3 = 18 + 9 = 27
3x-3 = 33
=> x - 3 = 3
x = 3 + 3 = 6
7 phút 18 giây : 2 = 3 phút 39 giây
3 giờ 15 phút x 4 = 13 giờ
15,6 phút : 2 + 1,25 phút x 3 = 11,55 phút
15 phút 42 giây x 5 = 188 phút 2 giây
Tìm x:
a) x3 +3x2 - 10x = 0
b) x3 - 5x2 - 14x =0
c) x3 + 5x2- 24x =0
Giải giúp mình với ạ !
Mình cảm ơn !
x3+3x2-10x=0
=>x(3+3.2-10)=0
=>x=0
x3-5x2-14x=0
=>x(3-5.2-14)=0
=>x=0
x3+5x2-24x=0
=>x(3+5.2-24)=0
=>x=0
Câu a)
\(x^3+3x^2-10=0\Rightarrow x\left(x^2+3x-10\right)=0\Rightarrow x\left(x^2-2x+5x-10\right)=0\Rightarrow x\left(x\left(x-2\right)+5\left(x-2\right)\right)=0\Rightarrow x\left(x+5\right)\left(x-2\right)=0\)
\(\Rightarrow x=0;x=5;x=2\)
\(ĐK:x\ge0\\ PT\Leftrightarrow\left(x-\dfrac{3}{4}\right)\left(x^2+\dfrac{3}{4}x+\dfrac{9}{16}\right)\left(\sqrt{x}-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\left(n\right)\\\sqrt{x}=3\left(n\right)\\x^2+2\cdot\dfrac{3}{8}x+\dfrac{9}{64}+\dfrac{27}{64}=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=9\\\left(x+\dfrac{3}{8}\right)^2+\dfrac{27}{64}=0\left(\text{vô nghiệm}\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=9\end{matrix}\right.\)
a, 15 + x = 7
X= 7-15
x= -8
b, x - 9 = -24
x= -24+9
x= -15
c, - x + 8 = - 22
-x = -22-8
-x=-30
x=30
(15-X)+(X-12)=7-(-5+X)
15-X+X-12=7+5-X
-X+X+X=7+5-15+12
X=9
: 1/ (x+1)(x+3)(x+5)(x+7) + 15 = [ (x+1)(x+7) ].[ (x+3)(x+5) ] + 15
= (x² + 7x + x + 7).(x² + 5x + 3x + 15) + 15
= (x² + 8x + 7).(x² + 8x + 15) + 15
= (x² + 8x + 11 - 4)(x² + 8x + 11 + 4) + 15. Đặt x² + 8x + 11 = y (1) ta được.
(t - 4)(t + 4) + 15 = t² - 16 + 15 = t² - 1 = (t+1)(t-1) (2).
Thay (1) vào (2) ta được: đa thức trên được phân tích thành:
(x² + 8x + 11 + 1)(x² + 8x + 11 - 1) = x² + 8x + 12)(x² + 8x + 10).
Lưu ý: phương pháp này có tên là "Đặt ẩn phụ".
2/ x^7 - x² - 1 = x^7 - x² - 1 + x - x = (x^7 - x) + (-x² + x - 1)
= x(x^6 - 1) - (x² - x + 1) = x(x³ - 1)(x³ + 1) - (x² - x + 1)
= (x^4 - x)(x + 1)(x² - x + 1) - (x² - x + 1)
= (x² - x + 1).[ (x^4 - x)(x + 1) - 1 ]
= (x² - x + 1).(x^5 + x^4 - x² - x - 1).
3/ x^4 + 4y^4 = x^4 + 4y^4 + 4x²y² - 4x²y²
= (x^4 + 4x²y² + 4y^4) - (2xy)²
= (x² + 2y²)² - (2xy)² = [ (x² + 2y²) + (2xy) ].[ (x² + 2y²) - (2xy) ]
= (x² + 2xy + 2y²).(x² - 2xy + 2y²)
4/ x^5 + x + 1 = x^5 + x + 1 + x² - x²
= (x^5 - x²) + (x² + x + 1) = x²(x³ - 1) + (x² + x + 1)
= x²(x - 1)(x² + x + 1) + (x² + x + 1) = (x² + x + 1).[ x²(x - 1) + 1 ]
= (x² + x + 1).(x³ - x² + 1).
5/ x^5 + x - 1 = x^5 + x - 1 + x² - x² = (x^5 + x²) + (-x² + x - 1)
= x²(x³ + 1) - (x² + x - 1) = x²(x + 1)(x² - x + 1) - (x² - x + 1)
= (x² - x + 1).[ x²(x + 1) - 1 ] = (x² - x + 1).(x³ + x² - 1).
6/ (x² + y² - z²)² - 4x²y² = (x² + y² - z²)² - (2xy)²
= [ (x² + y² - z²) - 2xy ].[ (x² + y² - z²) + 2xy ]
= [ x² + y² - z² - 2xy ].[ x² + y² - z² + 2xy ]
= [ (x² - 2xy + y²) - z² ].[ (x² + 2xy + y²) - z² ]
= [ (x - y)² - z² ].[ (x + y)² - z² ] = (x-y+z)(x-y-z)(x+y+z)(x+y-z).
Mong bạn sẽ hiểu
\(a,\left(x-15\right)\times7-270=169\times45\\ \left(x-15\right)\times7-270=7605\\ \left(x-15\right)\times7=7605+270\\ \left(x-15\right)\times7=7875\\ x-15=7875:7\\ x-15=1125\\ x=1125+15\\ x=1140\\ b,64-\left(34\times x-8\right)=4\\ 34\times x-8=64-4\\ 34\times x-8=60\\ 34\times x=60+8\\ 34\times x=68\\ x=68:34\\ x=2\)
\(7-\left(-x^3\right)=15\)
\(\Leftrightarrow7+x^3=15\)
\(\Rightarrow x^3=15-7\)
\(\Rightarrow x^3=8\)
\(\Rightarrow x=2\)