tính nhanh:
\(2001.2002.2003.\left(11.1212-12.1111\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(98.7676 - 9898.76):(2001.2002.2003. ... . 2013)
= (98.101.76 - 98.101.76) : (2001.2002.2003. ... . 2013)
= 0 : (2001.2002.2003. ... . 2013)
= 0
a) ( 44.52.60) : (11.13.15)
=137280 : 2145
=64
b)123.456456-456.123123
=56144088 - 56144088
=0
c)(98.7676-9898.76) : (2001.2002.2003...2010)
=0 : ( 2001.2002.2003...2010)
=0
(Giải thích: Số 0 đem chia với bất kỳ số nào đều bằng 0.)
NHỜ TÍCH CHO MÌNH NHA
Ta có: \(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\cdot...\cdot\left(3^{64}+1\right)\)
\(=\dfrac{\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\cdot...\cdot\left(3^{64}+1\right)}{2}\)
\(=\dfrac{\left(3^4-1\right)\left(3^4+1\right)\cdot...\cdot\left(3^{64}+1\right)}{2}\)
\(=\dfrac{\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\left(3^{64}+1\right)}{2}\)
\(=\dfrac{\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\left(3^{64}+1\right)}{2}\)
\(=\dfrac{\left(3^{32}-1\right)\left(3^{32}+1\right)\left(3^{64}+1\right)}{2}\)
\(=\dfrac{\left(3^{64}-1\right)\left(3^{64}+1\right)}{2}\)
\(=\dfrac{3^{128}-1}{2}\)
E = ( 98 . 7676 - 9898 . 76 ) : ( 2001.2002.2003.....2009)
E = ( 98 . 76 .101 - 98 . 101 . 76 ) : ( 2001.2002.2003....2009)
E = 0 : ( 2001.2002.2003....2009)
E = 0
k mik nha
a) (-2,5. 0,38. 0, 4) - ( 0,125. 3,15. (-8))
=((-2,5.0,4).0,38) - ((-8.0,125).3,15)
= ((-1).0,38) - ((-1).3,15)
= -0,38 - (-3,15)
= 2.77
b) ((-20,83) .0,2 + (-9,17).0,2) : ( 2,47.0,5 - (-3,53).0,5)
= ((-20,83 - 9,17).0,2) : ((2,47 + 3,53).0,5)
= (-6) : 3
= -2
a) (-2,5. 0,38. 0, 4) - ( 0,125. 3,15. (-8))
=((-2,5.0,4).0,38) - ((-8.0,125).3,15)
= ((-1).0,38) - ((-1).3,15)
= -0,38 - (-3,15)
= 2.77
b) ((-20,83) .0,2 + (-9,17).0,2) : ( 2,47.0,5 - (-3,53).0,5)
= ((-20,83 - 9,17).0,2) : ((2,47 + 3,53).0,5)
= (-6) : 3
= -2
Ta có:
\(\begin{array}{l}M = \left( {{{10}^2} - 1} \right).\left( {{{10}^2} - {2^2}} \right).\left( {{{10}^2} - {3^2}} \right).\,\,...\left( {{{10}^2} - {{10}^2}} \right)..\,\,.\left( {100 - {{50}^2}} \right)\\ = \left( {{{10}^2} - 1} \right).\left( {{{10}^2} - {2^2}} \right).\left( {{{10}^2} - {3^2}} \right).... 0 ...\left( {100 - {{50}^2}} \right)\\ = 0\end{array}\)
a) [(-2,5. 0,38. 0, 4) - ( 0,125. 3,15. (-8)]
=[(-2,5.0,4).0,38] - [(-8.0,125).3,15)]
= [(-1).0,38] - [(-1).3,15]
= -0,38 - (-3,15)
= 2.77
b) [(-20,83) .0,2 + (-9,17).0,2] : [ 2,47.0,5 - (-3,53).0,5]
= [(-20,83 - 9,17).0,2] : [(2,47 + 3,53).0,5]
= (-6) : 3
= -2
\(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\\=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\\ =\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\\ =\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\\ =\left(2^{16}-1\right)\left(2^{16}+1\right)\\ =2^{32}-1 \)
\(=5+5+...+5\)
Tổng trên có \(\left[\left(57-2\right):5+1\right]:2=6\left(\text{số 5}\right)\)
Vậy tổng là \(6\cdot5=30\)
\(\text{2001.2002.2003.(11.1212−12.1111)}=2021.2022.2023.\left(11.12.101-12.11.101\right)=2021.2022.2023.0=0\)