K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2017

Gọi ƯCLN của n + 1; 2n + 3 là a

Ta có:

n + 1 và 2n + 3 chia hết cho a.

=> 2n + 2 và 2n + 3 chia hết cho a 

=> ƯCLN(2n + 2, 2n + 3) = 1

=> 1 = a => a = 1

=> Phân số \(\frac{n+1}{2n+3}\) là phân số tối giản

11 tháng 2 2017

thank you 

a: Gọi d=ƯCLN(2n+7;2n+3)

=>2n+7 chia hết cho d và 2n+3 chia hết cho d

=>2n+7-2n-3 chia hết cho d

=>4 chia hết cho d

mà 2n+7 lẻ

nên d=1

=>PSTG

b: Gọi d=ƯCLN(6n+5;8n+7)

=>4(6n+5)-3(8n+7) chia hết cho d

=>-1 chia hết cho d

=>d=1

=>PSTG

 

28 tháng 2

1.    a. Tính :

1.    a. Tính :

28 tháng 2 2021

fhehuq3

a) \(\frac{n}{2n+1}\)

Gọi \(d=ƯCLN\left(n;2n+1\right)\left(d>0\right)\)

\(\Rightarrow\hept{\begin{cases}n⋮d\\2n+1⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2n⋮d\\2n+1⋮d\end{cases}}\)

\(\Rightarrow\left(2n+1\right)-2n⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(n;2n+1\right)=1\)

\(\Rightarrow\)Phân số \(\frac{n}{2n+1}\)là phân số tối giản

b) \(\frac{2n+3}{4n+8}\)

Gọi \(d=ƯCLN\left(2n+3;4n+8\right)\left(d>0\right)\)

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)

\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\)

Vì \(2n+3=\left(2n+2\right)+1=2\left(n+1\right)+1\)(không chia hết cho 2)

\(\Rightarrow d\ne2\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(2n+3;4n+8\right)=1\)

\(\Rightarrow\)Phân số \(\frac{2n+3}{4n+8}\)là phân số tối giản

a:

Sửa đề: \(\dfrac{n+1}{2n+3}\)

Gọi d=ƯCLN(n+1;2n+3)

=>2n+2-2n-3 chia hết cho d

=>-1 chia hết cho d

=>d=1

=>ĐPCM

b: Gọi d=ƯCLN(4n+8;2n+3)

=>4n+8-4n-6 chia hết cho d

=>2 chia hêt cho d

=>d=1

=>ĐPCM

c: Gọi d=ƯCLN(3n+2;5n+3)

=>15n+10-15n-9 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ĐPCM

22 tháng 1 2020

a) Ta có:\(\frac{2n+1}{2n+3}\)là phân số tối giản

Mà: 2n chia hết cho 2n

       1 không chia hết cho 3

=>\(\frac{2n+1}{2n+3}\)là phân số tối giàn  (phân số tối giản là phân số có tử và mẫu là hai số nguyên tố cùng nhau ko có ước chung)

24 tháng 2 2015

\(P=\frac{\left(2n^3+n^2\right)+\left(2n^2+n\right)-\left(2n+1\right)}{\left(2n^3+n^2\right)+\left(2n^2+n\right)+\left(2n+1\right)}\)

\(P=\frac{n^2\left(2n+1\right)+n\left(2n+1\right)-\left(2n+1\right)}{n^2\left(2n+1\right)+n\left(2n+1\right)+\left(2n+1\right)}\)

\(P=\frac{n^2\left(2n+1\right)+n\left(2n+1\right)-\left(2n+1\right)}{n^2\left(2n+1\right)+n\left(2n+1\right)+\left(2n+1\right)}\)

P không là tối giản vì cả tử và mẫu đều chia hết cho (2n +1)

13 tháng 8 2017

ban thieu DKXD:N=/\(\frac{-1}{2}\)

12 tháng 5 2021

Câu 1:

gọi n-1/n-2 là M.

Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1

Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)

Gọi d = ƯCLN (n - 1; n - 2) 

=> n - 1 - (n - 2) ⋮⋮d       *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1

=> 1 ⋮⋮d

=> d ∈∈Ư (1)

Ư (1) = {1}

=> d = 1

Mà ngay từ lúc đầu d phải bằng 1 rồi.

Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.

28 tháng 2 2021

Thiếu `n in N`

Đặt `A=(n+1)/(2n+3)(x ne -3/2)`

Giả sử A không là phân số tối giản

`=>n+1 vdots 2n+3`

`=>2n+2 vdots 2n+3`

`=>1 vdots 2n+3`

`=>2n+3 in Ư(1)={1,-1}`

`=>2n in {-2,-4}`

`=>n in {-1,-2}` loại vì `n>=0`

`=>` điều giả sử sai

`=>` A là phân số tối giản với `n in N`

Để \(\dfrac{n+1}{2n+3}\)là phân số tối giản thì \(ƯCLN\left(n+1,2n+3\right)=1\)

Gọi d là ước chung lớn nhất của n+1 và 2n+3

Ta có:

\(\left[{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow}2n+3-2\left(n+1\right)⋮d\)

\(\Leftrightarrow2n+3-2n-2⋮d\)

\(\Leftrightarrow1⋮d\Rightarrow d=1\)

Do ước chung lớn nhất của cả tử và mẫu là 1 nên phân số \(\dfrac{n+1}{2n+3}\)đó tối giản  ( đpcm )