tìm x bt: |2x+1|= |12x-5 |
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x\left(12x-5\right)-8x\left(3x-1\right)=30\)
\(\Leftrightarrow24x^2-10x-24x^2+8x=30\)
\(\Leftrightarrow-2x=30\)
\(\Leftrightarrow x=-15\)
<br class="Apple-interchange-newline"><div></div>2x(12x−5)−8x(3x−1)=30
<=>\(24x^2-10x-24x^2+8x=30\)
<=>\(-2x=30\)
<=>\(x=30:\left(-2\right)\)
<=>\(x=-15\)
a/x^4 lớn hơn hoặc = 0
x^2 lớn hơn hoặc = 0
2 > 0
=> x^4+x^2+2 >0 => bieu thức luôn dương
b/ (x+3)(x-11)+2003 <=> x^2 -8x -33 +2003 <=> x^2 -8x +1970 <=> x^2-8x+16+1954 <=> (x-4)^2+1954
ta có : (x-4)^2 lớn hơn hoặc = 0
1954 >0
=> (x-4)^2+1954>0 => bt luôn dương
Bài 1 trước nha . chúc bạn học tốt . Ủng hộ nha
\(=>-9\left(x^2-\frac{4}{3}x+\frac{5}{3}\right)=>-9\left(x^2-2.\frac{2}{3}x+\frac{4}{9}+\frac{11}{9}\right)=>-9\left(x-\frac{2}{3}\right)^2-11\)
Ta có \(\left(x-\frac{2}{3}\right)^2\ge0=>-9\left(x-\frac{2}{3}\right)^2\le0,-11< 0\)
\(-9\left(x-\frac{2}{3}\right)^2-11\le0\)=> bt luôn âm
Bài 1:
a: ĐKXĐ: \(x+4\ne0\)
=>\(x\ne-4\)
b: ĐKXĐ: \(2x-1\ne0\)
=>\(2x\ne1\)
=>\(x\ne\dfrac{1}{2}\)
c: ĐKXĐ: \(x\left(y-3\right)\ne0\)
=>\(\left\{{}\begin{matrix}x\ne0\\y-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\y\ne3\end{matrix}\right.\)
d: ĐKXĐ: \(x^2-4y^2\ne0\)
=>\(\left(x-2y\right)\left(x+2y\right)\ne0\)
=>\(x\ne\pm2y\)
e: ĐKXĐ: \(\left(5-x\right)\left(y+2\right)\ne0\)
=>\(\left\{{}\begin{matrix}x\ne5\\y\ne-2\end{matrix}\right.\)
Bài 2:
a: \(\dfrac{-12x^3y^2}{-20x^2y^2}=\dfrac{12x^3y^2}{20x^2y^2}=\dfrac{12x^3y^2:4x^2y^2}{20x^2y^2:4x^2y^2}=\dfrac{3x}{5}\)
b: \(\dfrac{x^2+xy-x-y}{x^2-xy-x+y}\)
\(=\dfrac{\left(x^2+xy\right)-\left(x+y\right)}{\left(x^2-xy\right)-\left(x-y\right)}\)
\(=\dfrac{x\left(x+y\right)-\left(x+y\right)}{x\left(x-y\right)-\left(x-y\right)}=\dfrac{\left(x+y\right)\left(x-1\right)}{\left(x-y\right)\left(x-1\right)}\)
\(=\dfrac{x+y}{x-y}\)
c: \(\dfrac{7x^2-7xy}{y^2-x^2}\)
\(=\dfrac{7x\left(x-y\right)}{\left(y-x\right)\left(y+x\right)}\)
\(=\dfrac{-7x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\dfrac{-7x}{x+y}\)
d: \(\dfrac{7x^2+14x+7}{3x^2+3x}\)
\(=\dfrac{7\left(x^2+2x+1\right)}{3x\left(x+1\right)}\)
\(=\dfrac{7\left(x+1\right)^2}{3x\left(x+1\right)}=\dfrac{7\left(x+1\right)}{3x}\)
e: \(\dfrac{3y-2-3xy+2x}{1-3x-x^3+3x^2}\)
\(=\dfrac{3y-2-x\left(3y-2\right)}{1-3x+3x^2-x^3}\)
\(=\dfrac{\left(3y-2\right)\left(1-x\right)}{\left(1-x\right)^3}=\dfrac{3y-2}{\left(1-x\right)^2}\)
g: \(\dfrac{x^2+7x+12}{x^2+5x+6}\)
\(=\dfrac{\left(x+3\right)\left(x+4\right)}{\left(x+3\right)\left(x+2\right)}\)
\(=\dfrac{x+4}{x+2}\)
b: \(\Leftrightarrow48x^2-12x-20x+5-48x^2+36x=30\)
\(\Leftrightarrow4x=25\)
hay \(x=\dfrac{25}{4}\)
Ta có: \(C=\frac{3x^2-7x^2-12+45}{3x^3-19x^2+33x-9}\) ĐKXĐ: x khác 3, 1/3
\(=\frac{\left(x-3\right)^2\left(2x+5\right)}{\left(x-3\right)^2\left(3x-1\right)}\)
\(=\frac{2x+5}{3x-1}\)
Để C>0, ta có:
-5/2<x<1/3 (thỏa mãn ĐKXĐ)
`@` `\text {Ans}`
`\downarrow`
`a)`
`3x ( 12x - 4 ) - 9x( 4x - 3 ) = 30`
`=> 3x (12x-4) - 3*3x (4x - 3) = 30`
`=> 3x [12x - 4 - 3(4x-3)] = 30`
`=> 3x (12x - 4 - 12x + 9) = 30`
`=> 3x (-4+9)=30`
`=> 3x*5=30`
`=> 3x=6`
`=> x=2`
Vậy, `x=2`
`b)`
`x( 5 - 2x) + 2x( x - 1)`
`=> x(5-2x) + 2x^2 - 2x=15`
`=> 5x - 2x^2 + 2x^2 - 2x =15`
`=> 3x = 15`
`=> x=5`
Vậy, `x=5.`
a: =>36x^2-12x-36x^2+27x=30
=>15x=30
=>x=2
b: =>5x-2x^2+2x^2-2x=15
=>3x=15
=>x=5
|2x+1|=|12x-5|
2x+1=12x-5
1+5=12x-2x
6=10x
x=10:6
x=10/6
l2x + 1l = l12x - 5l
2x + 1 = 12x - 5
2x + 1 - 12x + 5 = 0
(2x - 12x) + (1 + 5) = 0
-14x + 6 = 0
-14x = 0 - 6
-14x = -6
x = -6 : (-14)
x = 3/7