Tính:
a, \(2015.20142014-2014.20152014\)
b, \(2^2+4^2+6^2+8^2+..+30^2\)
c,\(\frac{1}{4.3}+\frac{1}{6.4}\frac{1}{8.5}\frac{1}{10.6}\frac{1}{12.7}\frac{1}{14.8}\frac{1}{16.9}\frac{1}{18.10}\)
Ai làm nhanh và giải đầy đủ nhất thì mik tik cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{7}{4}-\left(\frac{1}{2.2}+\frac{1}{4.3}+\frac{1}{6.4}+\frac{1}{8.5}+\frac{1}{10.6}+\frac{1}{12.7}+\frac{1}{14.8}\right)\div x=0\)
\((\frac{1}{2.2}+\frac{1}{4.3}+\frac{1}{6.4}+\frac{1}{8.5}+\frac{1}{10.6}+\frac{1}{12.7}+\frac{1}{14.8})\div x=\frac{7}{4}\)
\((\frac{1}{4}+\frac{1}{12}+\frac{1}{24}+\frac{1}{40}+\frac{1}{60}+\frac{1}{84}+\frac{1}{112})\div x=\frac{7}{4}\)
\(\left[\frac{1}{2}\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\right)\right]\div x=\frac{7}{4}\)
\(\left[\frac{1}{2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\right)\right]\div x=\frac{7}{4}\)
\(\left[\frac{1}{2}\left(1-\frac{1}{8}\right)\right]\div x=\frac{7}{4}\)
\(\left(\frac{1}{2}.\frac{7}{8}\right)\div x=\frac{7}{4}\)
\(\frac{7}{16}\div x=\frac{7}{4}\)
\(x=\frac{7}{16}\div\frac{7}{4}\)
\(x=\frac{7}{16}\times\frac{4}{7}\)
\(x=\frac{1}{4}\)
\(\frac{7}{4}-\left(\frac{1}{2\cdot2}+\frac{1}{4\cdot3}+\frac{1}{6\cdot4}+\frac{1}{8\cdot5}+\frac{1}{10\cdot6}+\frac{1}{12\cdot7}+\frac{1}{14\cdot8}\right)\)
\(=\frac{7}{4}-\left(\frac{1}{4}+\frac{1}{12}+\frac{1}{24}+\frac{1}{40}+\frac{1}{60}+\frac{1}{84}+\frac{1}{112}\right)\)
\(=\frac{7}{4}-\frac{1}{2}\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\right)\)
\(=\frac{7}{4}-\frac{1}{2}\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\right)\)
\(=\frac{7}{4}-\frac{1}{2}\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\right)\)
\(=\frac{7}{4}-\frac{1}{2}\left(1-\frac{1}{8}\right)\)
\(=\frac{7}{4}-\frac{1}{2}\cdot\frac{7}{8}\)
\(=\frac{7}{4}-\frac{7}{16}=\frac{28}{16}-\frac{7}{16}=\frac{21}{16}\)
a)
\(\begin{array}{l}0,75 - \frac{5}{6} + 1\frac{1}{2} = \frac{3}{4} - \frac{5}{6} + \frac{3}{2}\\ = \frac{9}{{12}} - \frac{{10}}{{12}} + \frac{{18}}{{12}} = \frac{{17}}{{12}}\end{array}\)
b)
\(\begin{array}{l}\frac{3}{7} + \frac{4}{{15}} + \left( {\frac{{ - 8}}{{21}}} \right) + \left( { - 0,4} \right) = \frac{3}{7} + \frac{4}{{15}} - \frac{8}{{21}} - \frac{2}{5}\\ = \left( {\frac{3}{7} - \frac{8}{{21}}} \right) + \left( {\frac{4}{{15}} - \frac{2}{5}} \right)\\ = \left( {\frac{9}{{21}} - \frac{8}{{21}}} \right) + \left( {\frac{4}{{15}} - \frac{6}{{15}}} \right)\\ = \frac{1}{{21}} + \left( {\frac{{ - 2}}{{15}}} \right)\\ = \frac{5}{{105}} - \frac{{14}}{{105}}\\ = \frac{{ - 9}}{{105}} = \frac{{ - 3}}{{35}}\end{array}\)
c)
\(\begin{array}{l}0,625 + \left( {\frac{{ - 2}}{7}} \right) + \frac{3}{8} + \left( {\frac{{ - 5}}{7}} \right) + 1\frac{2}{3}\\ = \frac{5}{8} + \left( {\frac{{ - 2}}{7}} \right) + \frac{3}{8} - \frac{5}{7} + \frac{5}{3}\\ = \left( {\frac{5}{8} + \frac{3}{8}} \right) + \left( {\frac{{ - 2}}{7} - \frac{5}{7}} \right) + \frac{5}{3}\\ = 1 - 1 + \frac{5}{3} = \frac{5}{3}\end{array}\)
d)
\(\begin{array}{l}\left( { - 3} \right).\left( {\frac{{ - 38}}{{21}}} \right).\left( {\frac{{ - 7}}{6}} \right).\left( { - \frac{3}{{19}}} \right)\\ = \frac{{ - 3.\left( { - 38} \right).\left( { - 7} \right).\left( { - 3} \right)}}{{21.6.19}}\\ = \frac{{3.38.7.3}}{{21.6.19}}\\ = \frac{{3.2.19.7.3}}{{3.7.3.2.19}}\\ = 1\end{array}\)
e)
\(\begin{array}{l}\left( {\frac{{11}}{{18}}:\frac{{22}}{9}} \right).\frac{8}{5} = \left( {\frac{{11}}{{18}}.\frac{9}{{22}}} \right).\frac{8}{5}\\ = \frac{{11.9.4.2}}{{9.2.2.11.5}} = \frac{2}{5}\end{array}\)
g)
\(\left[ {\left( {\frac{{ - 4}}{5}} \right).\frac{5}{8}} \right]:\left( {\frac{{ - 25}}{{12}}} \right) = \frac{{ - 20}}{{40}}:\left( {\frac{{ - 25}}{{12}}} \right)\\ = \frac{{ - 1}}{2}.\frac{{ - 12}}{{25}} = \frac{6}{{25}}\)
a: \(\left(\dfrac{1}{5}\right)^{-2}=25\)
b: \(4^{\dfrac{3}{2}}=8\)
c: \(\left(\dfrac{1}{8}\right)^{-\dfrac{2}{3}}=\left(\dfrac{1}{2}\right)^{3\cdot\dfrac{-2}{3}}=\left(\dfrac{1}{2}\right)^{-2}=4\)
d: \(\left(\dfrac{1}{16}\right)^{-0.75}=\left(\dfrac{1}{2}\right)^{4\cdot\left(-0.75\right)}=\left(\dfrac{1}{2}\right)^{-3}=8\)
a, \(\left(\frac{1}{2}-\frac{1}{3}\right)\cdot6^x+6^{x+2}=6^{10}+6^7\)
\(\Leftrightarrow\frac{1}{6}\cdot6^x+6^x\cdot6^2=6^{10}+6^7\)
\(\Leftrightarrow6^{x-1}\left(1+6^3\right)=6^7\left(6^3+1\right)\)
\(\Leftrightarrow6^{x-1}=6^7\Leftrightarrow x-1=7\)
\(\Leftrightarrow x=8\)
b, \(\left(\frac{1}{2}-\frac{1}{6}\right)\cdot3^{x+4}-4\cdot3^x=3^{16}-4\cdot3^{13}\)
\(\Leftrightarrow\frac{1}{3}\cdot3^{x+4}-4\cdot3^x=3^{13}\left(3^3-4\right)\)
\(\Leftrightarrow3^x\cdot3^3-4\cdot3^x=3^{13}\left(3^3-4\right)\)
\(\Leftrightarrow3^x\left(3^3-4\right)=3^{13}\left(3^3-4\right)\)
\(\Leftrightarrow3^x=3^{13}\Leftrightarrow x=13\)
a. x=8
b. x=13
còn cách tính thì mình quên rồi vì minh học cái này lâu lắm rồi ko nhớ đc.