Cho x,y>0 thỏa mãn \(x^3\)+\(y^3\)+x-y
CMR:x2+y2<1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề.
Áp dụng BĐT Cauchy-schwarz dạng engel ta có:
\(\frac{1}{x}+\frac{4}{y}=\frac{1}{x}+\frac{2^2}{y}\ge\frac{\left(1+2\right)^3}{x+y}=\frac{9}{3}=3\)
Dấu " = " xảy ra <=> x=1; y=2
Đặt \(a=\dfrac{1}{x};b=\dfrac{1}{y}\). khi đó gt trở thành:
\(a+b=a^2+b^2-ab\ge\dfrac{1}{4}\left(a+b\right)^2\Leftrightarrow o\le a+b\le4\);
\(A=a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)=\left(a+b\right)^2\le16\)
Đẳng thức xảy ra khi và chỉ khi a=b=2 <=> x=y=1/2
Vậy Max A = 16
1) \(A=x^2+y^2=\left(x+y\right)^2-2xy\)
Do \(x+y=1\)nên \(A=1-2xy\)
Xài Cosi ngược: \(2xy\le\frac{\left(x+y\right)^2}{2}\)\(\Rightarrow A=1-2xy\ge1-\frac{\left(x+y\right)^2}{2}=1-\frac{1}{2}=\frac{1}{2}\)
\(\Rightarrow A\ge\frac{1}{2}\). Vậy Min A = 1/2. Đẳng thức xảy ra <=> \(x=y=\frac{1}{2}\).
-có lẽ là x3+y3=x-y-
Vì x,y>0=>x3+y3>0=>x-y>0
Có x2+y2<1<=>(x-y)(x2+y2)<x-y<=>(x-y)(x2+y2)<x3+y3
<=>x3+xy2-x2y-y3<x3+y3<=>x3+y3-x3-xy2+x2y+y3>0
<=>2y3-xy2+x2y>0<=>y(2y2-xy+x2)>0
<=>y[7y2/4+(y/2 - x)2] > 0 (luôn đúng do x,y>0)