Cho hbh ABCD có B nhọn. Gọi H,K ll là hình chiếu của B trên AD và CD.
C/m DA.DH+DC.DKk=DB^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, HS tự chứng minh
b, HS tự chứng minh
c, Chú ý ∆AKD:∆ANC (g.g) và ∆ABI:∆ACM (g.g). Từ đó tính được AD.AN và AB.AM
c) Xét ΔAEBΔAEB và ΔAHCΔAHC có:
ˆAA^ chung
ˆAEB=ˆAHC=90oAEB^=AHC^=90o
⇒ΔAEB∼ΔAHC⇒ΔAEB∼ΔAHC (g.g)
⇒AEAH=ABAC⇒AEAH=ABAC (hai cạnh tương ứng tỉ lệ)
⇒AE.AC=AB.AH⇒AE.AC=AB.AH (1)
Xét ΔAFDΔAFD và ΔAKCΔAKC có:
ˆAA^ chung
ˆAFD=ˆAKC=90oAFD^=AKC^=90o
⇒ΔAFD=ΔAKC⇒ΔAFD=ΔAKC (g.g)
⇒AFAK=ADAC⇒AFAK=ADAC (hai cạnh tương ứng bằng nhau)
⇒AF.AC=AK.AD⇒AF.AC=AK.AD (2)
Ta có OE=OF (suy ra từ ΔOEB=ΔOFDΔOEB=ΔOFD câu a)
OA=OC (tính chất hình bình hành)
⇒OA−OE=OC−OF⇒OA−OE=OC−OF hay AE=FCAE=FC (3)
Từ (1), (2) và (3) suy ra
AB.AH+AK.AD=AE.AC+AF.ACAB.AH+AK.AD=AE.AC+AF.AC
=AC(AE+AF)=AC(FC+AF)=AC2=AC(AE+AF)=AC(FC+AF)=AC2 (đpcm)
Xét\(\Delta AEB\)và\(\Delta AHCC\)có:
\(\widehat{A}\) chung
\(\widehat{AEB}=\widehat{AHC}=90^o\)
\(\Rightarrow\Delta ABE~\Delta AHC\left(g.g\right)\)
\(\Rightarrow\frac{AE}{AH}=\frac{AB}{AC}\)(hai cạnh tương ứng tỉ lệ)
\(\Rightarrow AE.AC=AB.AH\left(1\right)\)
Xét \(\Delta AFD\)và \(\Delta AKC\)có:
\(\widehat{A}\) chung
\(\widehat{AFD}=\widehat{AKC}=90^o\)
\(\Rightarrow\Delta AFD=\Delta AKC\left(g.g\right)\)
\(\Rightarrow\frac{AF}{AK}=\frac{AD}{AC}\)(hai cạnh tương ứng bằng nhau)
\(\Rightarrow AF.AC=AK.AD\left(2\right)\)
Ta có \(OE=OF\) (suy ra từ \(\Delta OEB=\Delta OFD\)trong câu a)
\(OA=OC\)(tính chất hình bình hành)
\(\Rightarrow OA-OE=OC-OF\)hay \(AE=FC\left(3\right)\)
Từ (1), (2) và (3) suy ra:
\(AB.AH+AK.AD=AE.AC+AF.AC\)
\(=AC\left(AE+AF\right)+AC\left(FC+AF\right)=AC^2\)(đpcm)
......phần kia lỗi....
c) Dễ chứng minh: Tam giác ADK đồng dạng với tam giác ACN (g - g)
\(\Rightarrow\dfrac{AD}{AC}=\dfrac{AK}{AN}\)
=> AD.AN = AC.AK (1)
Dễ chứng minh: Tam giác ABI đồng dạng với tam giác ACM (g - g)
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AI}{AM}\)
=> AB.AM = AC.AI (2)
Từ (1) và (2)
=> AD.AN + AB.AM = AC.AK + AC.AI = AC.(AK + AI) = AC. (AK + IK + AI) = AC.(AK + IK + IC) = AC^2
Câu này quá dễ! Áp dụng một chút đồng dạng là ok! Bạn tự nghĩ đi đừng phụ thuộc