K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2017

ấn vào đúng 0 

đáp án và lời giải sẽ hiện ra trước mắt

Kết quả hình ảnh cho online math

a:

BC=35cm 

\(AH=\dfrac{AB\cdot AC}{BC}=16.8\left(cm\right)\)

b: \(AE=\dfrac{AH^2}{AC}=\dfrac{16.8^2}{28}=10.08\left(cm\right)\)

\(AD=\dfrac{AH^2}{AB}=\dfrac{16.8^2}{21}=13.44\left(cm\right)\)

Do đó: \(S_{AED}=\dfrac{AD\cdot AE}{2}=\dfrac{13.44\cdot10.08}{2}=67.7376\left(cm^2\right)\)

14 tháng 12 2023

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=10^2-6^2=64\)

=>\(AC=\sqrt{64}=8\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot10=6\cdot8=48\)

=>AH=48/10=4,8(cm)

Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\)

nên \(\widehat{B}\simeq53^0\)

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\)

=>\(BH\cdot10=6^2=36\)

=>BH=36/10=3,6(cm)

ΔAHB vuông tại H

=>\(S_{HAB}=\dfrac{1}{2}\cdot HA\cdot HB=\dfrac{1}{2}\cdot4,8\cdot3,6=8,64\left(cm^2\right)\)

14 tháng 12 2023

a) Để tính độ dài đường cao \(AH\) và số đo \(\angle B\), chúng ta có thể sử dụng các quy tắc trong tam giác vuông.

 

Chúng ta biết rằng trong tam giác vuông, độ dài của đường cao \(AH\) từ đỉnh vuông \(A\) xuống cạnh huyền \(BC\) có thể được tính bằng công thức:

 

\[AH = \frac{1}{2} \times BC\]

 

Trong trường hợp này:

 

\[AH = \frac{1}{2} \times 10 \, \text{cm} = 5 \, \text{cm}\]

 

Số đo của góc \(\angle B\) có thể được tính bằng cách sử dụng hàm tan trong tam giác vuông:

 

\[\tan B = \frac{AH}{AB}\]

 

\[\angle B = \arctan\left(\frac{AH}{AB}\right)\]

 

Trong trường hợp này:

 

\[\tan B = \frac{5}{6}\]

 

\[\angle B = \arctan\left(\frac{5}{6}\right)\]

 

Bạn có thể sử dụng máy tính để tính toán giá trị chính xác của \(\angle B\).

 

b) Để tính diện tích tam giác \(AHB\), chúng ta sử dụng công thức diện tích tam giác:

 

\[S_{AHB} = \frac{1}{2} \times \text{độ dài } AH \times \text{độ dài } AB\]

 

Trong trường hợp này:

 

\[S_{AHB} = \frac{1}{2} \times 5 \, \text{cm} \times 6 \, \text{cm} = 15 \, \text{cm}^2\]

 

Vậy, độ dài của đường cao \(AH\) là \(5 \, \text{cm}\), số đo của góc \(\angle B\) có thể được tính, và diện tích tam giác \(AHB\) là \(15 \, \text{cm}^2\).

Bài 5: 

Ta có: \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH\left(BH+9\right)=400\)

\(\Leftrightarrow BH^2+25HB-16HB-400=0\)

\(\Leftrightarrow BH=16\left(cm\right)\)

hay BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

17 tháng 2 2019

a, \(BC^2=AB^2+AC^2=6^2+8^2=100\Rightarrow BC=10\left(cm\right)\)

\(AH.BC=AB.AC\left(=2S_{ABC}\right)\Rightarrow AH.10=6.8\Rightarrow AH=4,8\left(cm\right)\)

b, \(\Delta AEH\infty\Delta AHB\left(g.g\right)\Rightarrow\frac{AE}{AH}=\frac{AH}{AB}\Rightarrow AE.AB=AH^2\)

c, \(\Delta AFH\infty\Delta AHC\Rightarrow\frac{AF}{AH}=\frac{AH}{AC}\Rightarrow AH^2=AF.AC\)

d, \(AE.AB=AF.AC\left(=AH^2\right)\Rightarrow\frac{AB}{AF}=\frac{AC}{AE}\)

\(\Delta ABC\infty\Delta AFE\left(c.g.c\right)\)

e, \(AH^2=AE.AB\Rightarrow\left(4,8\right)^2=AE.6\Rightarrow AE=3,84\left(cm\right)\)

\(AH^2=AF.AC\Rightarrow\left(4,8\right)^2=AF.8\Rightarrow AF=2,88\left(cm\right)\)

Vậy \(S_{BCFE}=S_{ABC}-S_{AEF}=\frac{1}{2}AB.AC-\frac{1}{2}AE.AF=\frac{1}{2}.6.8-\frac{1}{2}.3,84.2,88=18,4704\left(cm^2\right)\)

AH=15*20/25=300/25=12(cm)

1 tháng 4 2023

AH=15*20/25=300/25=12(cm)

4 tháng 9 2017

Vì SABC=37,5=>AH.BC=75=>BC=12,5

Đặt cạnh CH=x

=>HB=12,5-x

Áp dụng hệ thức 2 vào tam giác abc

AH2=BH.CH

<=>62=x(12,5-x)

<=>36=12,5x-x2

<=>x2-12,5x+36=0

<=>(x-6,25)2=3

..............tìm x sau đó thay vào tìm ab,ac

DB/DC=AB/DC

DB+DC=BC

=>DB=5-20=-15 là sai đề rồi bạn