tính \(\frac{abc}{a+b+c}\)biết rằng (a+b):(8-c):(10+c)=2:5:3:4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{x+y-z}{5+4-3}=\dfrac{18}{6}=3\)
Do đó: x=15; y=12; z=9
c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{5}=\dfrac{b}{4}=\dfrac{c}{7}=\dfrac{a+2b+c}{5+2\cdot4+7}=\dfrac{10}{20}=\dfrac{1}{2}\)
Do đó: a=5/2; b=2; c=7/2
e: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{2}=\dfrac{a+b}{4+5}=\dfrac{10}{9}\)
Do đó: a=40/9; b=50/9; c=20/9
f: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{2a+b-c}{2\cdot2+3-4}=\dfrac{-12}{3}=-4\)
Do đó: a=-8; b=-12; c=-16
Ta có : \(\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{b}{4}=\frac{c}{5}\end{cases}\Rightarrow\hept{\begin{cases}\frac{a}{8}=\frac{b}{12}\\\frac{b}{12}=\frac{c}{15}\end{cases}\Rightarrow}\frac{a}{8}=\frac{b}{12}=\frac{c}{15}=\frac{a+b-c}{8+12-15}=\frac{10}{5}=2}\)(dãy tỉ số bằng nhau)
=> \(\hept{\begin{cases}a=16\\b=24\\c=30\end{cases}}\)
Ta có : \(\frac{a}{2}=\frac{b}{3}\Rightarrow\frac{a}{8}=\frac{b}{12}\) và \(\frac{b}{4}=\frac{c}{5}\Rightarrow\frac{b}{12}=\frac{c}{15}\Rightarrow\frac{a}{8}=\frac{b}{12}=\frac{c}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có : \(\frac{a}{8}=\frac{b}{12}=\frac{c}{15}=\frac{a+b-c}{8+12-15}=\frac{10}{5}=2\)
\(\Rightarrow a=2.8=16\) \(b=12.2=24\) \(c=15.2=30\)
Vậy \(a=16;b=24;c=30\)