Cho tam giác ABC có A=90, AB=AC. Qua A kẻ đường thẳng d sao cho B và C nằm cùng phía đối với d. Vẽ BD và CE vuông góc với d ( D, E thuộc d ). Chứng minh rằng:
a) Tam giác BAD= tam giác ACE
b) DE=BD+CE
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
12 tháng 2 2021
Xét ΔABD và ΔCAE có:
Góc ADB=Góc CEA=90
AB=AC
GócABD=Góc CAE( cùng phụ góc BAD)
=>ΔABD=ΔCAE
b) Ta có ΔABD=ΔCAE
=> AD=CE và BD=AE
=>BD+CE=AE+AD=ED
11 tháng 6 2017
a) Xét ∆BAD và ∆ACE có:
^BDA=^AEC (cùng bằng 90 độ)
AB=AC (gt)
^BAD=^ACE (cùng phụ với ^EAC)
suy ra ∆BAD=∆ACE (cạnh huyền-góc nhọn)
b) Do ∆BAD=∆ACE nên AD=CE và AE=BD
mà DE=DA+AE
suy ra DE = CE+BD (đpcm)
Bài 2)
a) Xét ∆AOD và ∆COB có:
^OAD=^OCB(so le trong)
AD=BC(gt)
^ADO=^CBO(so le trong)
suy ra ∆AOD=∆COB (g-c-g)
do đó OA=OC (hai cạnh tương tứng)
b)
Xét ∆AEO và ∆COF có:
^EAO=^OCF (so le trong)
OA=OC (c/m trên)
^AOE=^COF (đối đỉnh)
suy ra ∆AEO=∆COF (g-c-g)
do đó OE=OF (hai cạnh tương ứng)
hãy follow instagram của tớ nhé:Luzu_ne