Tim a,b,c biet:
a(a+b+c)=-1/24
b(a+b+c)=1/16
c(a+b+c)=-1/72
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT Cô-si:
$\frac{1}{a}+a\geq 2\sqrt{\frac{1}{a}.a}=2$
$\frac{1}{4b}+b\geq 2\sqrt{\frac{1}{4b}.b}=1$
$\frac{1}{16c}+c\geq 2\sqrt{\frac{1}{16c}.c}=\frac{1}{2}$
Cộng các BĐT trên lại suy ra:
$M+a+b+c\geq 2+1+\frac{1}{2}$
$\Leftrightarrow M+1\geq 2+1+\frac{1}{2}$
$\Leftrightarrow M\geq \frac{5}{2}$
Vậy $M_{\min}=\frac{5}{2}$
đề sai ở mẫu cuối nhé
đặt b + c - a = x ; a + c - b = y ; a + b - c = z
\(\Rightarrow a=\frac{y+z}{2};b=\frac{x+z}{2};c=\frac{x+y}{2}\)
\(\Rightarrow P=\frac{2\left(y+z\right)}{x}+\frac{9\left(x+z\right)}{2y}+\frac{8\left(x+y\right)}{z}=\frac{2y}{x}+\frac{9x}{2y}+\frac{2z}{x}+\frac{8x}{z}+\frac{9z}{2y}+\frac{8y}{z}\)
\(\ge6+8+12=26\)