K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2015

Gọi ƯCLN(3n+1; 5n+4) là d. Ta có:

3n+1 chia hết cho d => 15n+5 chia hết cho d

5n+4 chia hết cho d => 15n+12 chia hết cho d

=> 15n+12-(15n+5) chia hết cho d

=> 7 chia hết cho d

=> d = 7

=> ƯCLN(3n+1; 5n+4) = 7

19 tháng 12 2017
Dap so la 7 ban nha
25 tháng 7 2015

Đặt d=ƯCLN(3n+1;5n+4)

=> (3n+1) chia hết cho d; (5n+4) chia hết cho d

=> (5n+4)-(3n+1) chia hết cho d

=>   3(5n+4)-5(3n+1) chia hết cho d

=>(15n+12)-(15n+5) chia hết cho d

=>   7 chia hết cho d

=> d thuộc {1;7}

=> d=7

Vậy WCLN(3n+1;5n+1)=7

Lưu ý bạn nên đổi chữ thuộc và chia hết thành dấu

có gì ko hiểu thì bạn hỏi mình nghe nếu mình đúng thì **** nha bạn


 

29 tháng 11 2018

\(\frac{3n+4}{3n-1}=1+\frac{5}{3n-1}\)

Để 3n+4 chia hết cho 3n-1 thì 5 chia hết cho 3n-1 hay \(3n-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Ta có bảng:

3n-1-5-115
3n-4026
n-4/302/32

Vì n thuộc N nên n=0;2

12 tháng 11 2021

a: \(\Leftrightarrow2n^4-2n^3-n^3+n^2-n^2+n-2⋮n-1\)

\(\Leftrightarrow n-1\in\left\{-1;1;2\right\}\)

hay \(n\in\left\{0;2;3\right\}\)

14 tháng 11 2021

b) \(\Rightarrow\left(n+2\right)\inƯ\left(19\right)=\left\{-19;-1;1;19\right\}\)

Do \(n\in N\)

\(\Rightarrow n\in\left\{17\right\}\)

a) Do \(n\in N\)

\(\Rightarrow n\inƯ\left(15\right)=\left\{1;3;5;15\right\}\)

c) \(\Rightarrow\left(n+1\right)+8⋮\left(n+1\right)\)

Do \(n\in N\Rightarrow n\inƯ\left(8\right)=\left\{1;2;4;8\right\}\)

d) \(\Rightarrow3\left(n+1\right)+18⋮\left(n+1\right)\)

Do \(n\in N\Rightarrow\left(n+1\right)\inƯ\left(18\right)=\left\{1;2;3;6;9;18\right\}\)

\(\Rightarrow n\in\left\{0;1;2;5;8;17\right\}\)

e) \(\Rightarrow\left(n-2\right)+10⋮\left(n-2\right)\)

Do \(n\in N\Rightarrow\left(n-2\right)\inƯ\left(10\right)=\left\{-2;-1;1;2;5;10\right\}\)

\(\Rightarrow n\in\left\{0;1;3;4;7;12\right\}\)

f) \(\Rightarrow n\left(n+4\right)+11⋮\left(n+4\right)\)

Do \(n\in N\Rightarrow\left(n+4\right)\inƯ\left(11\right)=\left\{11\right\}\)

\(\Rightarrow n\in\left\{7\right\}\)

 

14 tháng 11 2021

 \(19:\left(n+2\right)\)

⇒ (n+2)∈Ư(19)=(1,19)

n+2            1               19

n               -1(L)           17(TM)

NV
7 tháng 2 2021

\(a=\lim4^n\left(1-\left(\dfrac{3}{4}\right)^n\right)=+\infty.1=+\infty\)

\(b=\lim\left(4^n+2.2^n+1-4^n\right)=\lim2^n\left(2+\dfrac{1}{2^n}\right)=+\infty.2=+\infty\)

\(c=limn^3\left(\sqrt{\dfrac{2}{n}-\dfrac{3}{n^4}+\dfrac{11}{n^6}}-1\right)=+\infty.\left(-1\right)=-\infty\)

\(d=\lim n\left(\sqrt{2+\dfrac{1}{n^2}}-\sqrt{3-\dfrac{1}{n^2}}\right)=+\infty\left(\sqrt{2}-\sqrt{3}\right)=-\infty\)

\(e=\lim\dfrac{3n\sqrt{n}+1}{\sqrt{n^2+3n\sqrt{n}+1}+n}=\lim\dfrac{3\sqrt{n}+\dfrac{1}{n}}{\sqrt{1+\dfrac{3}{\sqrt{n}}+\dfrac{1}{n^2}}+1}=\dfrac{+\infty}{2}=+\infty\)

AH
Akai Haruma
Giáo viên
27 tháng 11 2023

Đề thiếu. Bạn xem lại đề.

27 tháng 11 2023

Bạn chép thiếu rồi hay sao ấy bạn

NV
7 tháng 2 2021

\(a=\lim\dfrac{5n\left(n+\sqrt{n^2-n-1}\right)}{n+1}=\lim\dfrac{5\left(n+\sqrt{n^2-n-1}\right)}{1+\dfrac{1}{n}}=\dfrac{+\infty}{1}=+\infty\)

\(b=\lim\dfrac{\sqrt{\dfrac{1}{n}+\sqrt{\dfrac{1}{n^3}+\dfrac{1}{n^4}}}}{1-\dfrac{1}{\sqrt{n}}}=\dfrac{0}{1}=0\)

\(c=\lim\dfrac{\sqrt{2n^2-1+\dfrac{7}{n^2}}}{3+\dfrac{5}{n}}=\dfrac{+\infty}{3}=+\infty\)

\(d=\lim\dfrac{\sqrt{3+\dfrac{2}{n}}-1}{3-\dfrac{2}{n}}=\dfrac{\sqrt{3}-1}{3}\)

21 tháng 6 2018

Trả lời giúp tui đi mọi ngừoi