tìm x y biết x^2+y^2+1/x^2+1/y^2=4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
\(ĐKXĐ:xy\ne0\)
\(x^2+y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}=4\)
Áp dụng BĐT cô-si ta có : \(x^2+\dfrac{1}{x^2}\ge2.\sqrt{x^2.\dfrac{1}{x^2}}=2\)
Tương tự : \(y^2+\dfrac{1}{y^2}\ge2.\sqrt{y^2.\dfrac{1}{y^2}}=2\)
Do đó : \(x^2+y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge4\)
Dấu bằng xảy ra khi : \(\Leftrightarrow x^2=\dfrac{1}{x^2};y^2=\dfrac{1}{y^2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm1\\y=\pm1\end{matrix}\right.\)
Vậy.........
Áp dụng bất đẳng thức Cauchy cho hai số không âm ta có
\(x^2+\dfrac{1}{x^2}\ge2\sqrt{x^2.\dfrac{1}{x^2}}=2\)
\(y^2+\dfrac{1}{y^2}\ge2\sqrt{x^2.\dfrac{1}{x^2}}=2\)
=> \(x^2+y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge4\)
Dấu"=" xảy ra \(\Leftrightarrow x^2=\dfrac{1}{x^2};y^2=\dfrac{1}{y^2}\)
\(\Leftrightarrow x^4=1;y^4=1\Leftrightarrow x=\pm1;y=\pm1\)
Thảo ơi== Sao tao không vào hộp tin nhắn của mày với tao được==??
ĐK: x,y khác 0
Áp dụng BĐT Cô-si ta có:
\(x^2+y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}\\ \ge2\sqrt{x^2.\dfrac{1}{x^2}}+2\sqrt{y^2.\dfrac{1}{y^2}}\\ =2+2=4\)
Dấu bằng xảy ra khi và chỉ khi: \(x=y=\pm1\)
Ta có:
\(x^2+y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}=4\\ \Leftrightarrow x^2-2+\dfrac{1}{x^2}+y^2-2+\dfrac{1}{y^2}=0\\ \Leftrightarrow\left(x-\dfrac{1}{x}\right)^2+\left(y-\dfrac{1}{y}\right)^2=0\)
Do \(\left(x-\dfrac{1}{x}\right)^2+\left(y-\dfrac{1}{y}\right)^2=0\) và \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{x}\right)^2\ge0\\\left(y-\dfrac{1}{y}\right)^2\ge0\end{matrix}\right.\) nên:
\(\left(x-\dfrac{1}{x}\right)^2=\left(y-\dfrac{1}{y}\right)^2=0\)
Do đó: \(x=y=\pm1\)
x2 + y2 + \(\frac{1}{x^2}+\frac{1}{y^2}\)=4
=>: \(\left(x^2+\frac{1}{x^2}+2\right)+\left(y^2+\frac{1}{y^2}+2\right)=6\)
=> \(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2=6\)
Vì x;y thuộc Z mà \(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2=6\)
=> không có x;y thõa mãn tổng 2 bình phương = 6
x=y=1 hoặc x=y=-1