Tìm tất cả các số nguyên x sao cho: (X+2) thuộc Bội của 0 và Ước của 17
Ai giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,12⋮x-1\)
\(x-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)
Ta lập bảng xét giá trị
x - 1 1 -1 2 -2 3 -3 4 -4 12 -12
x 2 0 3 -1 4 -2 5 -3 13 -11
\(c,x+15⋮x+3\)
\(x+3+12⋮x+3\)
\(12⋮x+3\)
Tự lập bảng , lười ~~~
\(d,\left(x+1\right)\left(y-1\right)=3\)
Ta lập bảng
x+1 | 1 | -1 | 3 | -3 |
y-1 | 3 | -3 | 1 | -1 |
x | 2 | 0 | 2 | -4 |
y | 4 | -2 | 2 | 0 |
i, Theo bài ra ta có : ( olm thiếu dấu và == nên trình bày kiủ nài )
\(x⋮10,x⋮12,x⋮15\)và \(100< x< 150\)
Gợi ý : Phân tích thừa số nguyên tố r xét ''BC'' ( chắc là BC )
:>> Hc tốt
Bài 3:
Để A nguyên thì \(x+5\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;9;-9;12;-12;18;-18;36;-36\right\}\)
hay \(x\in\left\{-4;-6;-3;-7;-2;-8;-1;-9;1;-11;4;-14;7;-17;13;-23;31;-41\right\}\)
Để x + 1 là ước của 3x + 6 khi 3x + 6 ⋮ x + 1
<=> 3x + 3 + 3 ⋮ x + 1
<=> 3(x + 1) + 3 ⋮ x + 1
Vì 3(x + 1) ⋮ x + 1 √ x ∈ R . Để 3(x + 1) + 3 ⋮ x + 1 <=> 3 ⋮ x + 1
=> x - 1 ∈ Ư(3) = { ± 1; ± 3 }
=> x = { - 2; 0; 2; 4 }
Câu 1:
Vì x + 1 là ước của 3x+6 => 3x+6 chia hết cho x+1
=> 3(x+1)+3 chia hết cho x+1
=> 3 chia hết cho x+1 hay x+1 thuộc {±1;±3}
=> x thuộc {0;-2;2;-4}
Vậy x thuộc {0;-2;2;-4}
K mk nhé rồi mk làm tiếp các câu còn lại nhé
Bài 1 ( x - 7 ) ( x + 3 ) < 0
\(\Rightarrow\hept{\begin{cases}x-7< 0\\x+3>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-7>0\\x+3< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< 7\\x>-3\end{cases}}\) hoăc \(\hept{\begin{cases}x>7\\x< -3\end{cases}}\) ( vô lí )
\(\Rightarrow\) - 3 < x < 7
Mà \(x\in Z\)
\(\Rightarrow x\in\left\{-2;-1;0;1;2;3;4;5;6\right\}\)
Vậy \(x\in\left\{-2;-1;0;1;2;3;4;5;6\right\}\)
Bài 2 n - 1 là bội của n + 5 và n + 5 là bội của n - 1
Là 2 bài riêng biệt ak ????
Bài 3 : Tìm a,b. thuộc Z biết ab = 24 ; a + b = -10 ~~~~~ Lát nghĩ
Bài 4 : Tìm các cặp số nguyên có tổng bằng tích ~~~~~ tối lm
1. bội của 3 \(\in\) { 3, 6, 9, 12, 15, ...}
nhưng B(3) \(\le\) 12
\(\Rightarrow B\left(3\right)\in\left\{3;6;9;12\right\}\)
2. \(B\left(4\right)\in\left\{4;8;12;16;20;24;28;...\right\}\)
nhưng \(5< B\left(4\right)< 25\)
\(\Rightarrow B\left(4\right)\in\left\{8;12;16;20\right\}\)
3. \(Ư\left(8\right)\in\left\{1;2;4;8\right\}\)
4. \(Ư\left(12\right)\in\left\{1;2;3;4;6;12\right\}\)
5. \(Ư\left(5\right)\in\left\{1;5\right\}\)
6. Ta có : \(Ư\left(9\right)\in\left\{1;3;9\right\}\)
mà \(x\inƯ\left(9\right)\)
Vậy: \(x\in\left\{1;3;9\right\}\)
a) Ta có: -7 \(\in\)B(x + 8)
< => x + 8 \(\in\)Ư(-7) = {1; -1; 7; -7}
Lập bảng :
x + 8 | 1 | -1 | 7 | -7 |
x | -7 | -9 | -1 | -15 |
Vậy ...