K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2017

(a-b-c)-(a-c)^2-2ab+2ab

=a-b-c-a^2+2ac-c^2-2ab+2ab

=a-b-c-a^2+2ab-c^2

mk thật sự k hỉu để ns j luôn đó

3 tháng 2 2017

Ì. Mk cụg chả hỉu j cả. Cô mk ra thế đấy

Ngậm cả buổi mà cụg nỏ ra 

16 tháng 11 2015

a^2+b^2-c^2+2ab

=(a^2+2ab+b^2)-c^2

=(a+b)^2-c^2

=(a+b-c)(a+b+c)

 

a^2+b^2+c^2+2ab

=(a^2+2ab+b^2)+c^2

=(a+b)^2+c^2

=(a+b+c)^2-2(a+b).c

=(a+b+c)^2-2ac-2bc

đến đây hình như ko phân tích đc

17 tháng 4 2022

\(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=a^2+b^2+c^2\Leftrightarrow ab+bc+ca=0\)

-Ta có hằng đẳng thức: \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(P=\dfrac{2bc}{a^2}+\dfrac{2ca}{b^2}+\dfrac{2ab}{c^2}+2bc+2ca+2ab\)

\(=\dfrac{2bc}{a^2}+\dfrac{2ca}{b^2}+\dfrac{2ab}{c^2}=\dfrac{2\left(b^3c^3+c^3a^3+a^3b^3\right)}{a^2b^2c^2}=\dfrac{2.\left(ab+bc+ca\right)\left(b^2c^2+c^2a^2+a^2b^2-ab^2c-abc^2-a^2bc\right)}{a^2b^2c^2}=\dfrac{2.0.\left(b^2c^2+c^2a^2+a^2b^2-ab^2c-abc^2-a^2bc\right)}{a^2b^2c^2}=0\)

17 tháng 4 2022

-C/m hằng đẳng thức trên:

\(x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)=\left(x+y+z\right)\left(x^2+y^2+z^2-xz-yz-xy\right)\left(đpcm\right)\)

18 tháng 9 2016

Anwer : 1

16 tháng 9 2020

tự làm

16 tháng 9 2020

cho anh tao đê

13 tháng 8 2017

\(a+b+c\le1\) hoặc \(a+b+c=1\) nhá

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT\ge\dfrac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=\dfrac{9}{\left(a+b+c\right)^2}=9\)

Đẳng thức xảy ra khi ..........

3 tháng 12 2017

\(C=\dfrac{a^2+b^2-c^2+2ab}{a+b+c}\)

\(C=\dfrac{\left(a^2+2ab+b^2\right)-c^2}{a+b+c}\)

\(C=\dfrac{\left(a+b\right)^2-c^2}{a+b+c}\)

\(C=\dfrac{\left(a+b-c\right)\left(a+b+c\right)}{a+b+c}\)

\(C=a+b-c\)

3 tháng 12 2017

a,\(C=\dfrac{a^2+b^2-c^2+2ab}{a+b+c}=\dfrac{\left(a+b\right)^2-c^2}{a+b+c}=\dfrac{\left(a+b-c\right)\left(a+b+c\right)}{a+b+c}=a+b-c\)b, \(D=\dfrac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}=\dfrac{\left(a+b\right)^2-c^2}{\left(a+c\right)^2-b^2}=\dfrac{\left(a+b-c\right)\left(a+b+c\right)}{\left(a-b+c\right)\left(a+b+c\right)}=\dfrac{a+b-c}{a-b+c}\)