n + 7 ⋮ n + 3
N + 12 ⋮ n + 2
5n + 11 ⋮ n + 2
Giúp e mai e thi rồi ạ !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B) n+5/n+3
Ta có:
(n+5) - (n+3) chia hết cho n+3
=>(n-n) + (5-3) chia hết cho n+3
=> 2 chia hết cho n+3
=> n+3 là Ư(2)={1 ; 2 ; -1 ; -2}
Ta có:
*)n+3= 1
n=1-3
n= -2
*)n+3=2
n= 2 - 3
n= -1
*)n+3= -1
n= -1-3
n= -4
*)n+3= -2
n= -2 - 3
n= -5
Để tớ gửi từ từ từng câu 1 nhé
a) n + 4 chia hết cho n
vì n chia hết cho n =>để n + 4 chia hết cho n thì 4 phải chia hết cho n
=>n Є {1;2;4}
b/ 3n + 7 chia hết cho n
vì 3n chia hết cho n => để 3n + 7 chia hết cho n thì 7 phải chia hết cho n
=>n Є {1;7}
Mình làm hết bước khó bước dễ bạn tự làm nha
a . n - 5 \(⋮\)n + 2
=> n + 2 - 7 \(⋮\)n + 2 mà n + 2 \(⋮\)n + 2 => 7 \(⋮\)n + 2
=> n + 2 thuộc Ư ( 7 ) = { - 7 ; - 1 ; 1 ; 7 }
b . 3n - 1 \(⋮\)5n + 2
=> 5 . ( 3n - 1 ) \(⋮\)5n + 2
=> 15n - 5 \(⋮\)5n + 2
=> 15n + 6 - 11 \(⋮\)5n + 2
=> 3 . ( 5n + 2 ) - 11 \(⋮\)5n + 2 mà 3 . ( 5n + 2 ) \(⋮\)5n + 2 => 11 \(⋮\)5n + 2
=> 5n + 2 thuộc Ư ( 11 ) = ...
Lập bảng tính giá trị của n
( Tự tính nhá...các câu na ná nhau... )
\(a)\dfrac{7}{3n-1}\) là số tự nhiên thì 3n - 1 ϵ Ư(7) = \(\left\{\pm1,\pm7\right\}\) .....
\(b)\dfrac{n+5}{n+3}=\dfrac{n+3+2}{n+3}=1+\dfrac{2}{n+3}\)
\(\Rightarrow n+3\inƯ\left(2\right)=\left\{\pm1,\in2\right\}\) .....
\(c)\dfrac{n-3}{n-1}=\dfrac{n-1-2}{n-1}1-\dfrac{2}{n-1}\\ \Rightarrow n-1\inƯ\left(2\right)=\left\{\pm1,\pm2\right\}......\)
d: Ta có: 3n+1 chia hết cho n-1
=>3n-3+4 chia hết cho n-1
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)
e: =>5n-5 chia hết cho 5n+1
\(\Leftrightarrow5n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(n\in\left\{0;-\dfrac{2}{5};\dfrac{1}{5};-\dfrac{3}{5};\dfrac{2}{5};-\dfrac{4}{5};1;-\dfrac{7}{5}\right\}\)
f: =>5n+5-5 chia hết cho n+1
\(\Leftrightarrow n+1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{0;-2;4;-6\right\}\)
ta có N(x)=2x2-2+k2+kx
=> 2.(-1)2-2+k2+k.(-1)=0
=.>k=1
chúc bạn thi tốt nha !!!
Thay \(x=-1\) vào đa thức \(N\left(x\right)=2x^2-2+k^2+kx\) ta được :
\(2\left(-1\right)^2-2+k^2+k\left(-1\right)=0\)
\(\Rightarrow k^2+k\left(-1\right)=0\)
\(\Rightarrow k.\left[k+\left(-1\right)\right]=0\)
\(\Rightarrow k+\left(-1\right)=0\)
\(\Rightarrow k=1\)
Vậy khi \(k=1\) thì đa thức \(N\left(x\right)\) có nghiệm là \(x=-1\)
a)(2n + 6) ⋮ (2n - 1)
Do đó ta có (2n + 6) = (2n - 1) + 7
Nên 7 ⋮ 2n - 1
Vậy 2n - 1 ∈ Ư(7) = {-1; 1; -7; 7}
Ta có bảng sau :
2n - 1 | -1 | 1 | -7 | 7 |
2n | 0 | 2 | -6 | 8 |
n | 0 | 1 | -3 | 4 |
➤ Vậy n ∈ {0; 1; -3; 4}
b)(3n + 7) ⋮ (n - 2)
(3n + 7) ⋮ 3(n - 2)
Do đó ta có (3n + 7) = 3(n - 2) + 13
Nên 13 ⋮ n - 2
Vậy n - 2 ∈ Ư(13) = {-1; 1; -13; 13}
Ta có bảng sau :
n - 2 | -1 | 1 | -13 | 13 |
n | 1 | 3 | -11 | 15 |
➤ Vậy n ∈ {1; 3; -11; 15}
c)(n + 7) ⋮ (n - 3)
Do đó ta có (n + 7) = (n - 3) + 10
Nên 10 ⋮ n - 3
Vậy n - 3 ∈ Ư(10) = {-1; 1; -2; 2; -5; 5; -10; 10}
Ta có bảng sau :
n - 3 | -1 | 1 | -2 | 2 | -5 | 5 | -10 | 10 |
n | 2 | 4 | 1 | 5 | -2 | 8 | -7 | 13 |
➤ Vậy n ∈ {2; 4; 1; 5; -2; 8; -7; 13}
d)(2n + 16) ⋮ (n + 1)
(2n + 16) ⋮ 2(n + 1)
Do đó ta có (2n + 16) = 2(n + 1) + 14
Nên 14 ⋮ n + 1
Vậy n + 1 ∈ Ư(14) = {-1; 1; -2; 2; -7; 7; -14; 14}
Ta có bảng sau :
n + 1 | -1 | 1 | -2 | 2 | -7 | 7 | -14 | 14 |
n | -2 | 0 | -3 | 1 | -8 | 6 | -15 | 13 |
➤ Vậy n ∈ {-2; 0; -3; 1; -8; 6; -15; 13}
e)(2n + 3) ⋮ n
2n + 3 ⋮ 2(n + 0)
Do đó ta có 2n + 3 = n + 3
Nên 3 ⋮ n
Vậy n ∈ Ư(3) = {-1; 1; -3; 3}
➤ Vậy n ∈ {-1; 1; -3; 3}
f)(5n + 12) ⋮ (n - 3)
(5n + 12) ⋮ 5(n - 3)
Do đó ta có (5n + 12) = 5(n - 3) + 27
Nên 27 ⋮ n - 3
Vậy n - 3 ∈ Ư(27) = {-1; 1; -3; 3; -9; 9; -27; 27}
Ta có bảng sau :
n - 3 | -1 | 1 | -3 | 3 | -9 | 9 | -27 | 27 |
n | 2 | 4 | 0 | 6 | -6 | 12 | -24 | 30 |
➤ Vậy n ∈ {2; 4; 0; 6; -6; 12; -24; 30}
Ta có:
\(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}\left(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(\Rightarrow\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2005.2006.2007}=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+...+\frac{1}{2005.2006}-\frac{1}{2006.2007}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2006.2007}\right)=\frac{1}{2}\left(\frac{2005.2008}{2.2006.2007}\right)\)
Đặt \(A=1.2+2.3+...+n\left(n+1\right)\)
\(\Rightarrow3A=1.2.\left(3-0\right)+2.3.\left(4-1\right)+...+n\left(n+1\right)\left(n+2-\left(n-1\right)\right)\)
\(\Rightarrow3A=1.2.3-1.2.0+2.3.4-1.2.3+...+n\left(n+1\right)\left(n+2\right)-\left(n-1\right)n\left(n+1\right)\)
\(\Rightarrow3A=n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow A=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
\(\Rightarrow1.2+2.3+...+2006.2007=\frac{2006.2007.2008}{2}\)
Vậy pt trở thành:
\(\frac{1}{2}\left(\frac{2005.2008}{2.2006.2007}\right)x=\frac{2006.2007.2008}{2}\)
\(\Leftrightarrow\frac{2005}{2.2006.2007}x=2006.2007\)
\(\Rightarrow x=\frac{2.\left(2006.2007\right)^2}{2005}\)