(17+x)+3.6=2.5^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1\left(2+2\right)+2\left(2+3\right)+3\left(2+4\right)+.....+\left(n-1\right)\left(2+n\right)\)
\(\Leftrightarrow A=1.2+1.2+2.3+2.2+3.4+2.3+....+\left(n-1\right)n+2\left(n-1\right)\)
\(\Leftrightarrow A=\left(1.2+2.3+.....+\left(n-1\right)n\right)+2\left(1+2+3+....+\left(n-1\right)\right)\)
Giả sử A=B+C
Với \(\begin{cases}B=1.2+2.3+.....+\left(n-1\right)n\\C=2\left[1+2+....+\left(n-1\right)\right]\end{cases}\)
Ta có
\(3B=1.2.\left(3-0\right)+2.3.\left(4-1\right)+......+\left(n-1\right)n\left[\left(n+1\right)-\left(n-2\right)\right]\)
\(\Rightarrow3B=1.2.3-0.1.2+2.3.4-1.2.3+.....+\left(n-1\right)n\left(n+1\right)-\left(n-2\right)\left(n-1\right)n\)
\(\Rightarrow B=\frac{\left(n-1\right)n\left(n+1\right)}{3}\)
Mặt khác
\(C=2\left[1+2+....+\left(n-1\right)\right]\)
\(\Rightarrow C=2.\frac{\left[\left(n-1\right)+1\right]n}{2}=n^2\)
\(\Rightarrow A=\frac{\left(n-1\right)n\left(n+1\right)}{3}+n^2\)
Vậy \(A=\frac{\left(n-1\right)n\left(n+1\right)}{3}+n^2\)
1.4+2.5+3.6+...+99.102=1(2+2)+2(3+2)+3(4+2)+...99(100+2)
=1.2+1.2+2.3+2.2+...+99.100+99.2
=(1.2+2.3+...+99.100)+2(1+2+...+99)
A=1.2+2.3+3.4+...+99.100(cho A la ten bieu thuc nay)
3A=1.2(3-0)+2.3(4-1)+...+99.100(101-98)
=(1.2.3+2.3.4+...+99.100.101)-(1.2.3+2.3.4+3.4.5+...+98.99.100
=99.100.101=>A=\(\frac{99.100.101}{3}\)=33330
2.(1+2+...99)
=2(100.99:2)=2.4950=9900
33330+9900=343200
vay...
Đặt \(A=1.4+2.5+3.6+...+100.103\)
\(=1\left(2.2\right)+2\left(3+2\right)+3\left(4+2\right)+...+100\left(101+2\right)\)
\(=1.2+2.3+3.4+...+100.101+\left(1.2+2.2+3.2+...+100.2\right)\)
\(=1.2+2.3+3.4+...+100.101+2\left(1+2+3+...+100\right)\)
\(=1.2+2.3+3.4+...+100.101+2.100\left(100+1\right):2\)
\(=1.2+2.3+3.4+...+100.101+10100\)
Đặt \(B=1.2+2.3+3.4+...+100.101\)
\(\Rightarrow3B=1.2.3+2.3.3+3.4.3+100.101.3\)
\(\Rightarrow3B=1.2.3+2.3\left(4-1\right)+3.4\left(5-2\right)+...+100.101\left(102-99\right)\)
\(\Rightarrow3B=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+100.101.102-99.100.101\)
\(\Rightarrow3B=100.101.102\)
\(\Rightarrow B=343400\)
Khi đó \(A=343400=10100=333300\)
Đặt A = 1.4 + 2.5 + 3.6 + 4.7 + ... + 100.103
3A = 3.(1.2 + 2.3 + 3.4 + ... + 100.101] + 3.(2 + 4 + 6 + ... + 200)
= 1.2.3 + 2.3.3 + 3.4.3 + ... + 100.101.3 + 3.(2 + 4 + 6 + ... + 200)
\(\Rightarrow\) A = 100.101.105:3 = 353500
A = 1.4 + 2.5 + 3.6 + ... + 99.102
A = 1.(2 + 2) + 2.(3 + 2) + 3.(4 + 2) + ... + 99.(100 + 2)
A = (1.2 + 2.3 + 3.4 + ... + 99.100) + (1.2 + 2.2 + 3.2 + ... + 99.2)
Đặt B = 1.2 + 2.3 + 3.4 + ... + 99.100
3B = 1.2.(3-0) + 2.3.(4-1) + 3.4.(5-2) + ... + 99.100.(101-98)
3B = 1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100
3B = 99.100.101
B = 33.100.101 = 333300
A = 333300 + 2.(1 + 2 + 3 + ... + 99)
A = 333300 + 2.(1 + 99).99:2
A = 333300 + 100.99
A = 333300 + 9900
A = 343200
`(17+x)+3.6=2.5^{2}`
`(17+x)+18=50`
`17+x=50-18=32`
`x=32-17=15`