4x^2-12x+5=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2-12x+11\)\(=0\)
\(\Leftrightarrow\left(x-6\right)^2-25=0\)
\(\Leftrightarrow\left(x-6+5\right)\left(x-6-5\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-11=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=11\end{matrix}\right.\)
a)\(x^2-12x+11=0\)
\(x^2-x-11x+11=0\)
\(\left(x^2-x\right)-\left(11x-11\right)=0\)
\(x\left(x-1\right)-11\left(x-1\right)=0\)
\(\left(x-1\right)\left(x-11\right)=0\)
\(=>\left[{}\begin{matrix}x-1=0\\x-11=0\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}x=1\\x=11\end{matrix}\right.\)
b)\(4x^2-4x-3=0\)
\(4x^2-2x+6x-3=0\)
\(2x\left(2x-1\right)+3\left(3x-1\right)=0\)
\(\left(2x-1\right)\left(2x+3\right)=0\)
\(=>\left[{}\begin{matrix}2x-1=0\\2x+3=0\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}x=0,5\\x=-1,5\end{matrix}\right.\)\
c)\(4x^2-12x-7=0\)
\(4x^2-14x+2x-7=0\)
\(2x\left(2x-7\right)+\left(2x-7\right)=0\)
\(\left(2x-7\right)\left(2x+1\right)=0\)
\(=>\left[{}\begin{matrix}2x-7=0\\2x+1=0\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}x=3,5\\x=-0,5\end{matrix}\right.\)
b) \(1+4x-3|x+2|+4=0\)
\(\Leftrightarrow4x-3|x+2|=-5\left(1\right)\)
TH1: Với \(|x+2|=x+2\)thay vào (1) ta được:
\(4x-3\left(x+2\right)=-5\)
\(\Leftrightarrow4x-3x-6=-5\)
\(\Leftrightarrow x=1\)(chọn tự thử lại nhé nó =0 )
TH2: Với \(|x+2|=-x-2\)thay vào (1) ta được:
\(4x-3\left(-x-2\right)=-5\)
\(\Leftrightarrow4x+3x+6=-5\)
\(\Leftrightarrow7x=-11\)
\(\Leftrightarrow x=\frac{-11}{7}\)( loại tự thử lại nhé nó ko =0 )
Vậy x=1
Lời giải:
ĐKXĐ:.........
PT \(\Leftrightarrow (4x^2-12x+11)-5\sqrt{4x^2-12x+11}-11=0\)
Đặt \(\sqrt{4x^2-12x+11}=t\)
\(\Rightarrow t^2-5t-11=0\)
\(\Rightarrow \left[\begin{matrix} t=\frac{5+\sqrt{69}}{2}\\ t=\frac{5-\sqrt{69}}{2}\end{matrix}\right.\). Vì $t$ không âm nên \(t=\frac{5+\sqrt{69}}{2}\)
\(\Rightarrow 4x^2-12x+11=t^2=\frac{47+5\sqrt{69}}{2}\)
\(\Leftrightarrow 4x^2-12x-\frac{25+5\sqrt{69}}{2}=0\)
\(\Rightarrow x=\frac{1}{4}\left(6\pm \sqrt{86+10\sqrt{69}}\right)\) (thỏa mãn)
Vậy...........
P/s: Thực chất chỉ cần có hướng làm là được, nhưng đề ra dở ở cái số quá xấu chỉ tổ làm vất học sinh chứ không giải quyết được gì có ích.
c.
ĐLXĐ: \(x\ge-\dfrac{1}{3}\)
\(-\left(3x+1\right)+\sqrt{3x+1}+4x^2-10x+6=0\)
Đặt \(\sqrt{3x+1}=t\ge0\)
\(\Rightarrow-t^2+t+4x^2-10x+6=0\)
\(\Delta=1+4\left(4x^2-10x+6\right)=\left(4x-5\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{-1+4x-5}{-2}=3-2x\\t=\dfrac{-1-4x+5}{-2}=2x-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x+1}=3-2x\left(x\le\dfrac{3}{2}\right)\\\sqrt{3x-1}=2x-2\left(x\ge1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=4x^2-12x+9\left(x\le\dfrac{3}{2}\right)\\3x-1=4x^2-8x+4\left(x\ge1\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
a.
ĐKXĐ: \(x\ge-\dfrac{5}{4}\)
\(\Leftrightarrow4x^2-12x-2-2\sqrt{4x+5}=0\)
\(\Leftrightarrow\left(4x^2-8x+4\right)-\left(4x+5+2\sqrt{4x+5}+1\right)=0\)
\(\Leftrightarrow\left(2x-2\right)^2-\left(\sqrt{4x+5}+1\right)^2=0\)
\(\Leftrightarrow\left(2x-2-\sqrt{4x+5}-1\right)\left(2x-2+\sqrt{4x+5}+1\right)=0\)
\(\Leftrightarrow\left(2x-3-\sqrt{4x+5}\right)\left(2x-1+\sqrt{4x+5}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{4x+5}=2x-3\left(x\ge\dfrac{3}{2}\right)\\\sqrt{4x+5}=1-2x\left(x\le\dfrac{1}{2}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+5=4x^2-12x+9\left(x\ge\dfrac{3}{2}\right)\\4x+5=4x^2-4x+1\left(x\le\dfrac{1}{2}\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
\(12\left(x+5\right)+2x=130\\\Leftrightarrow 12x+60+2x=130\\ \Leftrightarrow14x=70\\ \Leftrightarrow x=5\\ ----\\ 23\left(x-5\right)-12x=138\\ \Leftrightarrow23x-115-12x=138\\ \Leftrightarrow23x-12x=138+115\\ \Leftrightarrow11x=253\\ \Leftrightarrow x=\dfrac{253}{11}=23\\ ----\\ 360-12x+23\left(x-5\right)=278\\ \Leftrightarrow360-12x+23x-115=278\\ \Leftrightarrow-12x+23x=278+115-360\\ \Leftrightarrow11x=33\\ \Leftrightarrow x=\dfrac{33}{11}=3\)
\(6\left(x+3\right)+3\left(x-5\right)=278\\ \Leftrightarrow6x+18-3x-15=278\\ \Leftrightarrow6x-3x=278+15-18\\ \Leftrightarrow3x=275\\ \Leftrightarrow x=\dfrac{275}{3}\\ ---\\ \left(7-x\right)\left(3x-90\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}7-x=0\\3x-90=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=30\end{matrix}\right.\)
a) \(x^2-12x+11=0\)
\(\Leftrightarrow x^2-2.6.x+36-25=0\)
\(\Leftrightarrow\left(x-6\right)^2-25=0\)
\(\Leftrightarrow\left(x-6\right)^2=25=5^2=\left(-5\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=5\\x-6=-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=11\\x=1\end{matrix}\right.\)
Vậy : \(x\in\left\{11,1\right\}\)
c) \(4x^2-12x-7=0\)
\(\Leftrightarrow\left(2x\right)^2-2.2x.3+9-16=0\)
\(\Leftrightarrow\left(2x-3\right)^2-16=0\)
\(\Leftrightarrow\left(2x-3\right)^2=16=4^2=\left(-4\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=4\\2x-3=-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=7\\2x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{7}{2}\\x=-\frac{1}{2}\end{matrix}\right.\)
Vậy : \(x\in\left\{\frac{7}{2},-\frac{1}{2}\right\}\)
Câu b) và d) xíu em làm sau, em hơi bận chút !!
Làm tiếp nha >>>
b) \(4x^2-4x-3=0\)
\(\Leftrightarrow\left(2x\right)^2-2.2x.1+1-4=0\)
\(\Leftrightarrow\left(2x-1\right)^2-4=0\)
\(\Leftrightarrow\left(2x-1\right)^2=4=2^2=\left(-2\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=2\\2x-1=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=3\\2x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=-\frac{1}{2}\end{matrix}\right.\)
Vậy : \(x\in\left\{\frac{3}{2},-\frac{1}{2}\right\}\)
d) \(x^3-6x^2=8-12x\)
\(\Leftrightarrow x^3-6x^2-\left(8-12x\right)=0\)
\(\Leftrightarrow x^3-6x^2-8+12x=0\)
\(\Leftrightarrow x^3-3.x^2.2+3.x.2^2-2^3=0\)
\(\Leftrightarrow\left(x-2\right)^3=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy : \(x=2\)
P/s : Hằng đẳng thức với lập phương khó thật, rối câu d) mãi mới nghĩ ra >>
\(\)
a: \(x^2+12x+36=0\)
=>\(x^2+2\cdot x\cdot6+6^2=0\)
=>\(\left(x+6\right)^2=0\)
=>x+6=0
=>x=-6
b: \(4x^2-4x+1=0\)
=>\(\left(2x\right)^2-2\cdot2x\cdot1+1^2=0\)
=>\(\left(2x-1\right)^2=0\)
=>2x-1=0
=>2x=1
=>x=1/2
c: \(x^3+6x^2+12x+8=0\)
=>\(x^3+3\cdot x^2\cdot2+3\cdot x\cdot2^2+2^3=0\)
=>\(\left(x+2\right)^3=0\)
=>x+2=0
=>x=-2
\(4x^2-12x+5=0\Leftrightarrow4x^2-10x-2x+5=0\Leftrightarrow2x\left(2x-5\right)-\left(2x-5\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x-1\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\2x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy ...
4x2 - 12x + 5 = 0 <=> 4x2 - 2x - 10x + 5 =0
<=> 2x ( 2x - 1) - 5 (2x - 1) = 0
<=> (2x-5)(2x-1) = 0
=> \(\left\{{}\begin{matrix}2x-5=0< =>x=2,5\\2x-1=0< =>x=0,5\end{matrix}\right.\)
Vậy với x = 0,5 hoặc x = 2,5 thì ta đc PT trên.
=\(4x^2-10x-2x+5=\left(4x^2-2x\right)-\left(10x+5\right)\)
=\(2x.\left(2x-1\right)-5.\left(2x-1\right)=\left(2x-5\right).\left(2x-1\right)\)